due Jan 30, 2012 at the beginning of class

Topics covered : direction fields; equations $y^{\prime}=a y+b$, where a and b are constant; separable equations (corresponds to sections 1.1, 1.2, 2.2 in the textbook). You do not need to use calculator for this assignment.

1. Assume that the velocity v of the falling object satisfies the following differential equation:

$$
\begin{equation*}
v^{\prime}(t)=19.6-\frac{v}{10} \tag{1}
\end{equation*}
$$

(a) Find a number v_{e} such that $v(t) \equiv v_{e}$ is a solution of equation (1) (in other words find the equilibrium solution of (1)).
(b) Solve the equation (1) with initial condition $v(0)=0$. What is the limit of this solution when $t \rightarrow+\infty$? How this limiting velocity is related to your answer in the item (a)?
(c) Find the time that must elapse for the object to reach 50% of the limiting velocity found in the item (b).
(d) How far does the object fall in the time found in the item (c).
2. Given the differential equation:

$$
\begin{equation*}
y^{\prime}=2+3 y \tag{2}
\end{equation*}
$$

(a) Find all equilibrium solutions.
(b) Sketch a direction field.
(c) Given any initial condition $y(0)=y_{0}$ describe the behavior of the corresponding solution when $t \rightarrow-\infty$ and the behavior of the corresponding solutions when $t \rightarrow+\infty$.
(d) Solve the equation (2) for each initial value $y(0)=y_{0}$ and justify your answer in the item (c) analyzing the obtained solution.
3. Solve the following differential equations (find the general solutions):
(a) $\left(1-x^{2}\right)^{1 / 2} y^{\prime}+x y=0$
(b) $y^{\prime}+\frac{x \cos x}{y \cos y}=0$.
4. Given the differential equation:

$$
\begin{equation*}
y^{\prime}=y-y^{2} \tag{3}
\end{equation*}
$$

(a) Find all equilibrium points.
(b) Sketch a direction field.
(c) Based on the sketch of the direction field from the item (b) answer the following questions:
i. Let $y(t)$ be the solution of equation (3) satisfying the initial condition $y(0)=\frac{1}{2}$. Find the limit of $y(t)$ when $t \rightarrow+\infty$ and the limit of $y(t)$ when $t \rightarrow-\infty$ (for this you do not need to find $y(t)$ explicitly).
ii. Find all y_{0} such that the solution of the equation (3) with the initial condition $y(0)=y_{0}$ has the same limit at $+\infty$ as the solution from the item (c)i.
iii. Let $y(t)$ be the solution of equation (3) with $y(0)=-1$. Decide wether $y(t)$ is monotonically decreasing or increasing and find to what value it approaches when t increases (the value might be infinite).
(d) (bonus - 10 points) Find the solution of the equation (3) with $y(0)=-1$ explicitly. Determine the interval in which this solution is defined.

