due Friday Oct 16 at the beginning of class

Topics covered : mechanical vibrations (section 3.7), forced vibrations (section 3.8) use that the gravitational acceleration $g=32 \frac{f t}{s^{2}}$.

1. (a) Determine $\omega_{0}>0, R>0$ and $\delta \in[0,2 \pi)$ so as to write the expression $-3 \cos 7 t+4 \sin 7 t$ in the form $R \cos \left(\omega_{0} t-\delta\right) ;($ you can use a calculator to determine an approximate value of δ);
(b) A mass weighing 16 lb is attached to a 5 ft -long spring. At equilibrium the spring measures 8.2 ft . Assume that there is no damping. If after this the mass is pushed 2 ft down and then set in motion with downward velocity of $4 \mathrm{ft} / \mathrm{s}$, determine the position u of the mass at any time t.
(c) Find the natural frequency, the period, the amplitude, and the phase of the motion of the spring-mass system of item (b) (you can use calculator to determine the phase).
(d) Assume that in the case of the spring-mass system of item (b) there is also a damping and we can change the damping constant. What is the critical damping constant?
2. A mass weighing 32 lb stretches a spring $\frac{8}{3} \mathrm{ft}$. The mass is initially released from rest from a point 2 ft below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force numerically equal to the instantaneous velocity. If the mass is driven by an external force $F(t)=20 \cos (3 t)$, then
(a) Find the equation of motion.
(b) Determine the steady state solution of this system.
