(a) Determine $\omega_0 > 0$, R > 0 and $\delta \in [0, 2\pi)$ so as to write the expression $-3\cos 7t + 4\sin 7t$ in the form $R\cos(\omega_0 t - \delta)$; (you can use a calculator to determine an approximate value of δ);

where $R = \sqrt{A^2 + B^2}$

$$\tan 8 = \frac{B}{A}$$

In our case
$$A=-3$$
, $B=4$, $W_0=7$

$$R = \sqrt{(-3)^2 + 4^2} = \sqrt{5}$$

$$tan 8 = \frac{4}{3} \Rightarrow 8 = 160^{\circ} - 53 = 127^{\circ}$$

Finally,

 $-3\cos(7t)+4\sin(7t)=5\cos(7t-127\pi/180)$

(b) A mass weighing 16 lb is attached to a 5 ft-long spring. At equilibrium the spring measures 8.2 ft. Assume that there is no damping. If after this the mass is pushed 2 ft down and then set in motion with downward velocity of 4 ft/s, determine the position u of the mass at any time t.

Given:
$$l=8.2-l=8.2-5=3.2$$
 ft
 $m=16/g=16/32=\frac{1}{2}$ slug
 $mg=16$ $mg=kL$, i.e. $16=3.2k$, or $k=5$
 $l=5$ We know that the position of undamped unforced vibration satisfies the following

γ=0

u(0)=2u'(0)=4

 $\frac{1}{2}u''+5u=0$, or u''+10u=0.

Find
$$u(t)$$
 Characteristic equation: $r^2+10=0$, i.e. $r_{1,2}=\pm i\sqrt{(10)}$ Fundamental set: $\{cos(\sqrt{10}t), sin(\sqrt{10}t)\}$

ODE mu''+ku=0. In our case this means

Genearl solution

Solution subject to the initial conditions:

$$u'(t) = -\sqrt{10} \, C_1 \, \text{SW}(\sqrt{10} \, t) + C_2 \, \sqrt{10} \, \text{Cos} \, (\sqrt{10} \, t)$$

$$u'(0) = C_2 \, \sqrt{10} = 4 \Rightarrow C_2 = \frac{4}{\sqrt{10}}$$
Finally, $u(t) = 2 \, \text{Cos} \, \sqrt{10} \, t + \frac{1}{10} \, \text{SW}(\sqrt{10} \, t)$

(c) Find the natural frequency, the period, the amplitude, and the phase of the motion of the spring-mass system of item (b) (you can use calculator to determine the phase).

We have: **A=2, B=4*10**^{-1/2}

Thus the amplitude $R=(A^2+B^2)^{1/2}=(4+16/10)^{1/2}=(28/5)^{1/2}$

natural frequency $\omega_0 = 10^{1/2}$

Period $T=2 \pi / 10^{1/2}$

To find phase note that both A and B are positive, i.e. the phase angle is in the first qudrant and it can be found as $\delta = arctan(B/A) = arctan(4*10^{-1/2}/2) = 32^{\circ}$, or 0.56 radian

(d) Assume that in the case of the spring-mass system of item (b) there is also a damping and we can change the damping constant. What is the critical damping constant?

We know that
$$\gamma_{crit}$$
 = $2\sqrt{km}$ = 2(5/2) $^{1/2}$

- A mass weighing 32 lb stretches a spring $\frac{8}{3}$ ft. The mass is initially released from rest from a point 2 ft below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force numerically equal to the instantaneous velocity. If the mass is driven by an external force $F(t) = 20\cos(3t)$, then
 - (a) Find the equation of motion.

```
Given: We know that the position satisfies the following ODE mg=32 \qquad mu'' + \gamma u' + ku = F(t). L=8/3 \qquad u'(0)=0 \qquad \text{In our case: } mg=kL \text{ implies } k=32/(8/3)=12 \\ u(0)=2 \qquad \text{and also } m=32/g=32/32=1 \\ \gamma=1 \qquad \text{and we have ODE:} \\ F(t)=20\cos(3t) \qquad u''+u'+12u=20\cos(3t) \text{ subject to the initial conditions} \\ u(0)=2, u'(0)=0
```

To determine the equation of motion we seek thee general solution in the form $u(t)=u_h(t)+u_p(t)$.

First solve the corresponding homogeneous ODE: u''+u'+12u=0.

The caracteristic equation $r^2+r+12=0$

has the following roots $r_{1,2} = (-1 \pm \sqrt{(-47)})/2 = (-1 \pm \sqrt{(47)}i)/2$

The corresponding general solution is

$$u_h = e^{-t/2} (C_1 \cos(\frac{1}{2}\sqrt{(47)}t) + C_2 \sin(\frac{1}{2}\sqrt{(47)}t))$$

To find a particular solution we apply the Method of Undetermined Coefficients. From the form of the external force $F(t)=20\cos(3t)$ it follows that

$$\alpha+i\beta=3i\neq r_{1,2}$$
.

Thus the multiplicity s=0 and then we find the a particular solution in the form

$$u_p(t)=t^s(A\cos(3t)+B\sin(3t)),$$
 or

 $u_p(t)=u(t)=A\cos(3t)+B\sin(3t)$

Find A and B: $u=A\cos(3t)+B\sin(3t)$ $u'=-3A\sin(3t)+3B\cos(3t)$ $u''=-9A\cos(3t)-9B\sin(3t)$

In our case we have $12u=12A\cos(3t)+12B\sin(3t)$

 $u'=-3A\sin(3t) +3B\cos(3t)$

 $u''=-9A\cos(3t)-9B\sin(3t)$

 $20\cos(3t) = (12A + 3B - 9A)\cos(3t) + (12B - 3A - 9B)\sin(3t),$

 $20\cos(3t)=(3A+3B)\cos(3t)+(3B-3A)\sin(3t)$ which implies

which implies 3A+3B=20

3A-3B=0. The solution is A=B=10/3. Thus, a particular solution is $u_p(t)=10(\cos(3t)+\sin(3t))/3$

General solution will be $u(t) = u_h(t) + u_p(t)$, or $u(t) = e^{-t/2} (C_1 \cos(t/2\sqrt{47})t) + C_2 \sin(t/2\sqrt{47})t) + 10(\cos(3t) + \sin(3t))/3$.

It remains to solve the corresponding IVP, i.e. to determine C_1 and C_2 . Given u(0)=2, or $C_1+10/3=2$, $C_1=2-10/3=-4/3$

 $u(\theta)=2$, or $C_1+1\theta/3=2$, $C_1=2-1\theta/3=-4/3$ $u'(\theta)=0$

 $u'(t) = -\frac{1}{2}e^{-\frac{t^2}{2}}(C_1\cos(\frac{t}{2}\sqrt{(47)t}) + C_2\sin(\frac{t}{2}\sqrt{(47)t})) + e^{-\frac{t^2}{2}}(-\frac{t}{2}\sqrt{(47)t}) + \frac{t}{2}\sqrt{(47)t} + \frac{t}{2}\sqrt{(47)t}) + 10(-\sin(3t) + \cos(3t)).$ Compared to the form of the second s

Hence, $u'(0)=-\frac{1}{2}C_1+\frac{1}{2}\sqrt{(47)}C_2+10=0$. Substitute $C_1=-\frac{4}{3}$ and conclude that $C_2=-\frac{64}{(3\sqrt{(47)})}$. Finally, the equation of motion is

 $u(t) = e^{-t/2} ((-4/3)\cos(\frac{t}{2}\sqrt{(47)t}) - 64/(3\sqrt{(47)})\sin(\frac{t}{2}\sqrt{(47)t})) + 10(\cos(3t) + \sin(3t))/3.$

(b) Determine the steady state solution of this system.

Steady state solution in this case is $u_p(t)$, or $u(t)=10(\cos(3t)+\sin(3t))/3$

Remark: in alternative form the steady state solution will be $u(t)=(10(\sqrt{2})/3)\cos(3t-\pi/4)$