due Wednesday Oct 23 at the beginning of class

Topics covered : definition and properties of Laplace transform; solution of initial value problems using Laplace transform, inverse Laplace transform of rational functions using partial fraction decomposition; (corresponds to sections 6.1 and 6.2)

1. Using an appropriate algebra and Laplace Transform properties (see also the Table) find the Laplace Transform of the given functions:
(a) $f(t)=\left(2013+e^{-t}-3 e^{2 t}\right) \sin 4 t$
(b) $g(t)=e^{13 t}(t+1)^{2}$
(c) $y(t)=e^{t}\left(4+5 t^{3}+12 \cos \frac{t}{4}\right)$
2. Find the inverse Laplace Transform of the given functions
(a) $F(s)=\frac{2 s+1}{s^{2}-7 s+12}$
(b) $H(s)=\frac{3 s-9}{s^{2}+4 s+29}$
(c) $Y(s)=\frac{2 s-1}{s^{2}(s+1)^{3}}$
3. Solve for $Y(s)$, the Laplace transform of the solution $y(t)$ to the given initial value problem (you do not need to find the solution $y(t)$ itself here):
(a) $4 y^{\prime \prime}-17 y^{\prime}+13 y=e^{-t} \cos 3 t, \quad y(0)=2, y^{\prime}(0)=-1$;
(b) $2 y^{\prime \prime}+3 y^{\prime}-5 y=t^{4} e^{4 t}, \quad y(0)=1, y^{\prime}(0)=0$
4. Using the Laplace transform find the solution of initial value problem

$$
4 y^{\prime \prime}-17 y^{\prime}+13 y=e^{-t} \cos 3 t, \quad y(0)=0, y^{\prime}(0)=0
$$

