Homework Assignment #11

Fall 2013 - MATH308

due Wednesday Oct 23 at the beginning of class

<u>Topics covered</u>: definition and properties of Laplace transform; solution of initial value problems using Laplace transform, inverse Laplace transform of rational functions using partial fraction decomposition; (corresponds to sections 6.1 and 6.2)

- 1. Using an appropriate algebra and Laplace Transform properties (see also the Table) find the Laplace Transform of the given functions:
 - (a) $f(t) = (2013 + e^{-t} 3e^{2t})\sin 4t$
 - (b) $g(t) = e^{13t}(t+1)^2$

(c) $y(t) = e^t (4 + 5t^3 + 12\cos\frac{t}{4})$

2. Find the inverse Laplace Transform of the given functions

(a)
$$F(s) = \frac{2s+1}{s^2 - 7s + 12}$$

(b) $H(s) = \frac{3s - 9}{s^2 + 4s + 29}$
(c) $Y(s) = \frac{2s - 1}{s^2(s+1)^3}$

- 3. Solve for Y(s), the Laplace transform of the solution y(t) to the given initial value problem (you do not need to find the solution y(t) itself here):
 - (a) $4y'' 17y' + 13y = e^{-t} \cos 3t$, y(0) = 2, y'(0) = -1; (b) $2y'' + 3y' - 5y = t^4 e^{4t}$, y(0) = 1, y'(0) = 0
- 4. Using the Laplace transform find the solution of initial value problem

$$4y'' - 17y' + 13y = e^{-t}\cos 3t, \quad y(0) = 0, \ y'(0) = 0.$$