Homework Assignment \#13due Monday Nov 4 at the begiming of class Fa13 - MATH	
Apply daplace Transform to LHS	
$\begin{gathered} \mathcal{L}\left\{y^{\prime \prime}+25 y\right\}=s^{2} Y(s)-s y(0)-y^{\prime}(0)+25 Y(s) \\ =s^{2} Y(s)-s \cdot 1-0+25 Y(s) \end{gathered}$	
$\left(s^{2}+2 s\right) Y(s)-s$	
Apply Laplace Transform to RHS$\text { Apply Laplace Transform }\left\{2 \delta\left(t-\frac{3 \pi}{2}\right)+25 \delta\left(t-\frac{\pi}{2}\right)\right\}=e^{-\frac{3 \pi}{2} s}+25 e^{-\frac{\pi}{2} s}$	
As a result, we get$\begin{aligned} & \text { a result, we get } \\ & \begin{array}{l} \left(s^{2}+25\right) Y(s)-s=e^{-\frac{3 \pi}{2} s}+25 e^{-\frac{\pi}{2} s} \\ \left(s^{2}+25\right) Y(s)=e^{-\frac{3 \pi}{2} s}+25 e^{-\frac{\pi}{2} s}+s \\ Y(s)=\frac{e^{-\frac{3 \pi}{2} s}}{s^{2}+25}+\frac{25 e^{-\frac{\pi}{2} s}}{s^{2}+2 s}+\frac{s}{s^{2}+25} \end{array} \end{aligned}$	
Denote $F(s)=\frac{1}{s^{2}+25}$ then$\begin{aligned} & Y(s)=e^{-\frac{3 \pi}{2} s} F(s)+25 e^{-\pi / 2 s} F(s)+\frac{s}{s^{2}+25} \\ & y(t)=u_{\frac{3 \pi}{2}}(t) f\left(t-\frac{3 \pi}{2}\right)+25 u_{\frac{\pi}{2}}(t) f\left(t-\frac{\pi}{2}\right)+\cos (5 t) \\ & \text { Find } f(t) \text { : } \end{aligned}$	
$\begin{aligned} & f(t)=\alpha, \\ & \operatorname{tence}, \\ & \left.y(t)=u_{\frac{3 \pi}{2}}(t) \cdot \frac{1}{5} \sin 5\left(t-\frac{3 \pi}{2}\right)+25 u_{\frac{\pi}{2}}(t) \frac{1}{5} \sin 5\left(t-\frac{\pi}{2}\right)+\cos 5 t\right) \end{aligned}$	
OR $y(t)=\frac{1}{5} u_{\frac{3 \pi}{2}}(t) \sin \left(5 t-\frac{15 \pi}{2}\right)+5 u_{\frac{\pi}{2}}^{2}(t) \sin \left(5 t \frac{5 \pi}{2}\right)+\cos (5 t)$	
Note that $\sin \left(5 t-\frac{15 \pi}{2}\right)=\sin \left(5 t-\frac{1 \pi}{2}\right)$	
and$\sin \left(5 t-\frac{5 \pi}{2}\right)=\sin \left(5 t-\frac{4 \pi+\pi}{2}\right)$	
\longrightarrow Finally,$\longrightarrow \text { Finally } \quad \begin{aligned} & \\ & y(t)=\frac{1}{5} \\ & u_{\frac{3 \pi}{2}}(\ln \\ & \\ & 5 t \end{aligned}-5 u_{\frac{\pi}{2}}(t) \cos (5 t)+\cos (5 t)$	
OR, equivalently,	

Title : Apr 4-9:59 AM (Page 1 of 6)
(b) Graph the obtained solution.

In part (a) we detained

$$
y(t)=\left(\frac{1}{5} u_{\frac{3 \pi}{2}}(t)-5 u_{\frac{\pi}{2}}(t)+1\right) \cos (5 t)
$$

Represent $y(t)$ in alternative form, using that

$$
\begin{aligned}
& u_{\frac{3 \pi}{2}}(t)=\left\{\begin{array}{ll}
0, & 0 \leqslant t<\frac{3 \pi}{2} \\
1, \frac{3 \pi}{2} \leqslant t
\end{array} \text { and } u_{\frac{\pi}{2}}(t)=\left\{\begin{array}{l}
0,0 \leqslant t<\frac{\pi}{2} \\
1, \frac{\pi}{2} \leqslant t
\end{array},\right.\right. \\
& y(t)= \begin{cases}\left(\frac{1}{5} \cdot 0-5 \cdot 0+1\right) \cos (5 t), & 0 \leqslant t<\frac{\pi}{2} \\
\left(\frac{1}{5} \cdot 0-5 \cdot 1+1\right) \cos (5 t), & \frac{\pi}{2} \leqslant t<\frac{3 \pi}{2} \\
\left(\frac{1}{5} \cdot 1-5 \cdot 1+1\right) \cos (5 t), & \frac{3 \pi}{2} \leq t\end{cases}
\end{aligned}
$$

OR

$$
y(t)=\left\{\begin{array}{l}
\cos (5 t), \quad 0 \leq t<\frac{\pi}{2} \\
-4 \cos (5 t), \quad \frac{\pi}{2} \leq t<\frac{3 \pi}{2} \\
-3.8 \cos (5 t), \quad \frac{3 \pi}{2} \leq t
\end{array}\right.
$$

graph for - cost
Title : Apr 4-10:02 AM (Page 2 of 6)
2. Use the convolution theorem to find the inverse Laplace transform of the given function:

$$
\frac{s}{\left(s^{2}+9\right)\left(s^{2}+25\right)}
$$

Denote

$$
\begin{aligned}
& F(s)=\frac{s}{s^{2}+9} \Rightarrow f(t)=\cos (3 t) \\
& G(s)=\frac{1}{s^{2}+2 s} \Rightarrow g(t)=\frac{1}{5} \sin (5 t)
\end{aligned}
$$

Then

$$
\begin{aligned}
& \text { hen } \\
& \begin{aligned}
& \mathcal{L}^{-1}\left\{\frac{s}{\left(s^{2}+q\right)\left(s^{2}+25\right)}\right\}=\mathcal{L}^{-1}\{F(s) G(s)\}=f * g \\
&=\int_{0}^{t} f(t-\tau) g(\tau) d \tau=\int_{0}^{t} \cos 3(t-\tau) \cdot \frac{1}{5} \sin \tau d \tau \\
&=\frac{1}{5} \int_{0}^{t} \cos (3 t-3 \tau) \sin (5) d \tau
\end{aligned}
\end{aligned}
$$

Use trigonometric identity:

$$
\begin{aligned}
& \text { se trigonometric } \\
& \cos A \sin B=\frac{1}{2}(\sin (B-A)+\sin (B+A))
\end{aligned}
$$

In our case

$$
\begin{aligned}
& \text { In our care } B=5 \tau \text {. Hence, } \\
& A=3 t-3 \tau, B=8 \tau-3 t
\end{aligned}
$$

$$
\begin{gathered}
A=3 C \\
B-A=5 \tau-3 t+3 \tau=8 \tau-3 t \\
B+A=5 \tau+3 t-3 \tau=2 \tau+3 t \\
t
\end{gathered}
$$

$$
\text { So, } \begin{aligned}
& B+A=5 \tau+3 t-3 \tau=2 \tau \\
& \int^{-1}\left\{\frac{5}{\left(5^{2}+9\right)\left(s^{2}+25\right)}\right\}=\frac{1}{5} \int_{6}^{t} \frac{1}{2}(\sin (8 \tau-3 t)+\sin (2 \tau+3 t)) d \tau \\
= & \frac{1}{10} \int_{0}^{t}(\sin (8 \tau-3 t)+\sin (2 \tau+3 t)) d \tau \\
= & -\left.\frac{1}{10}\left(\frac{1}{8} \cos (8 \tau-3 t)+\frac{1}{2} \cos (2 \tau+3 t)\right)\right|_{\tau=0} ^{t} \\
= & -\frac{1}{10}\left(\frac{1}{8}\left(\cos (5 t)-\cos (-3 t)+\frac{1}{2}(\cos (5 t)-\cos (3 t))\right)\right. \\
= & -\frac{1}{10}\left[\frac{1}{8} \cos (5 t)-\frac{1}{8} \cos (3 t)+\frac{1}{2} \cos (5 t)-\frac{1}{2} \cos (3 t)\right] \\
= & -\frac{1}{10}\left[\frac{5}{8} \cos (5 t)-\frac{5}{8} \cos (3 t)\right] \\
= & \frac{1}{16}[\cos (3 t)-\cos (5 t)]
\end{aligned}
$$

3. (a) Express the solution of the given initial value problem in terms of a convolution integral:

$$
y^{\prime \prime}-4 y^{\prime}+20 y=g(t), \quad y(0)=1, y^{\prime}(0)=0
$$

$$
\mathcal{L}\left\{y^{\prime \prime}-4 y^{\prime}+20 y\right)=\mathcal{L}\{g(t)\}
$$

$$
s^{2} Y(s)-s y(0)-y^{\prime}(0)-4(s Y(s)-y(0))+20 Y(s)=G(s)
$$

$$
\left(s^{2}-4 s+20\right) Y(s)-s-0+4=G(s)
$$

$$
\left(s^{2}-4 s+20\right) Y(s)=G(s)+s-4
$$

$$
Y(s)=\frac{G(s)}{s^{2}-4 s+20}+\frac{s-4}{s^{2}-4 s+20}
$$

$$
Y(s)=\frac{G(s)}{(s-2)^{2}+4^{2}}+\frac{s-7}{(s-2)^{2}+16}
$$

$$
Y(s)=G(s) \frac{1}{(s-2)^{2}+4^{2}}+\frac{s-2}{(s-2)^{2}+16}-\frac{1}{2} \cdot \frac{4}{(s-2)^{2}+16}
$$

$$
y(t)=\frac{1}{4} \mathcal{L}^{-1}\left\{G(s) \frac{4}{(s-2)^{2}+4^{2}}\right\}+\mathcal{L}^{-1}\left\{\frac{s-2}{(s-2)^{2}+4^{2}}\right\}-\frac{1}{2} \mathcal{L}^{-1}\left\{\frac{4}{(s-2)^{2}+4^{2}}\right\}
$$

Use convolution Theorem for the first term

$$
\begin{aligned}
& y(t)=\frac{1}{4} g(t) *\left(e^{2 t} \sin 4 t\right)+e^{2 t} \cos 4 t-\frac{1}{2} e^{2 t} \sin 4 t \\
& y(t)=\frac{1}{4} \int_{0}^{t} g(\tau) e^{2(t-\tau)} \sin 4(t-\tau) d \tau+e^{2 t}\left(\cos 4 t-\frac{1}{2} \sin 4 t\right)
\end{aligned}
$$

```
(b) (bonus-15 points) Find the solution of the same initial value problem(1) using the method of variation
```

 \(y^{\prime \prime}-4 y^{\prime}+20 y=g(t), \quad y(0)=1, y^{\prime}(0)=0\).
 General solution: \(y(t)=y_{p}(t)+y_{r}(t)\).
 Find $y_{h}(t)$:

Characteristic equation

$$
r^{2}-4 r+20=0 \Rightarrow(r-2)^{2}+16=0
$$

$$
\Rightarrow r=2 \pm 4 i
$$

$y_{n}(t)=c_{1} e^{2 t} \cos 4 t+c_{2} e^{2 t} \sin 4 t$
Variate parameters to find $y_{p}(t)$:

$$
\begin{aligned}
& \text { ate parameters to find } \begin{array}{l}
y_{p}(t) \\
y_{p}(t)=u_{1}(t) \underbrace{e^{2 t} \cos 4 t}_{y_{1}}+u_{2}(t) \underbrace{e^{2 t} \sin }_{y_{2}}
\end{array}
\end{aligned}
$$

Find Wronskian
$W\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}e^{2 t} \cos 4 t & e^{2 t} \\ \sin 4 t \\ 2 e^{2 t} \cos 4 t-4 e^{2 t} \sin 4 t & 2 e^{2 t} \sin 4 t+4 e^{2 t} \cos 4 t\end{array}\right|$
$=e^{4 t}[\cos 4 t(2 \sin 4 t+4 \cos 4 t)-\sin 4 t(2 \cos 4 t-4 \sin 4 t)]$
$=e^{4 t}\left[2 \cos 4 t \sin 4 t+4 \cos ^{2} 4 t-2 \sin 4 t \cos 4 t+4 \sin ^{2} 4 t\right]$
$=4 e^{4 t}\left(\cos ^{2} 4 t+\sin ^{2} 4 t\right)=4 e^{4 t}$
$u_{1}(t)=-\int_{0}^{t} \frac{g(\tau) y_{2}(\tau)}{w\left(y_{1}(\tau), y_{2}(\tau)\right)} d \tau=-\int_{0}^{t} \frac{g(\tau) e^{2 \tau} \sin 4 \tau}{4 e^{4 \tau}} d \tau$

$$
=-\frac{1}{4} \int_{0}^{t} g(\tau) e_{t}^{-2 \tau} \sin 4 \tau d \tau
$$

$u_{2}(t)=\int_{0}^{t} \frac{g(\tau) y_{1}(\tau)}{w\left(y_{1}(\tau), y_{2}(\tau)\right.} d \tau=\int_{0}^{t} \frac{g(\tau) e^{2 \tau} \cos 4 \tau}{4 e^{4 \tau}} d \tau$

$$
=\frac{1}{4} \int_{0}^{t} g(\tau) e^{-2 \tau} \cos 4 \tau d \tau
$$

Then $\quad y_{p}(t)=e^{2 t} \cos 4 t\left(-\frac{1}{4} \int_{0}^{t} g(\tau) e^{-2 \tau} \sin 4 \tau d \tau\right)$
$+e^{2 t} \sin (4 t) \cdot \frac{1}{4} \int_{0}^{t} g(\tau) e^{-2 \tau} \cos 4 \pi d \tau$
$=\frac{1}{4} \int_{0}^{t} g(\tau) e^{2(t-\tau)}[\sin 4 t \cos 4 \tau-\cos 4 t \sin 4 \tau] d \tau$
Using trigonometric identity
$\sin \alpha \cos \beta-\cos \alpha \sin \beta=\sin (\alpha-\beta)$
we get
$y_{p}(t)=\frac{1}{4} \int_{0}^{t} g(\tau) e^{2(t-\tau)} \sin 4(t-\tau) d \tau$
see next page

Title : Apr 4-10:03 AM (Page 5 of 6)

General solution is

$$
y(t)=\frac{1}{4} \int_{0}^{t} g(\tau) e^{2(t-\tau)} \sin 4(t-r) d \tau+c_{1} e^{2 t} \cos 4 t+c_{2} e^{4 t} \sin 4 t
$$

It remains to find solution subject to the initial conditions:

$$
y(0)=1, \quad y^{\prime}(0)=0
$$

We have:

$$
\begin{aligned}
& \text { We have: } \\
& \qquad y(0)=0+c_{1}+0=1 \Rightarrow c_{1}=1 \\
& \begin{aligned}
y^{\prime}(t)=\frac{1}{4} g(t) & e^{2(t-t)} \sin 4(t-t)+2 c_{1} e^{2 t} \cos 4 t \\
& +4 c_{1} e^{2 t}(-\sin 4 t)+2 c_{2} e^{2 t} \sin 4 t+4 c_{2} e^{2 t} \cos 4 t
\end{aligned} \\
& \text { OR } y^{\prime}(t)=e^{2 t}\left(2 c_{1} \cos 4 t-4 c_{1} \sin 4 t-2 c_{2} \sin 4 t+4 c_{2} \cos 4 t\right)
\end{aligned}
$$

Then

$$
y^{\prime}(0)=2 C_{1}+4 c_{2}=0 \Rightarrow c_{2}=-\frac{1}{2} c_{1}=-\frac{1}{2}
$$

Finally,

$$
\begin{aligned}
& \text { Finally, } \\
& y(t)=\frac{1}{4} \int_{0}^{t} g(\tau) e^{2(t-\tau)} \sin 4(t-\tau) d \tau+e^{2 t} \cos 4 t-\frac{1}{2} e^{2 t} \sin 4 t \\
& 1
\end{aligned}
$$

which coincides with the answer in item (a)

