due Friday Nov 8 at the beginning of class

Sections covered 7.1, 7.2, 7.4

1. Let $A=\left(\begin{array}{cc}7 & 3 \\ 2 & -1\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & -6 \\ -5 & 3\end{array}\right)$. Compute $A B-B A$.
2. Transform the given equation into a system of first order differential equations:
(a) $u^{\prime \prime}+u^{\prime}+u=e^{t} \tan t$
(b) $y^{(3)}+4 y^{\prime \prime}-4 t y=0$
3. Express the given system of linear differential equations in matrix form:
(a) $\left\{\begin{array}{l}x_{1}^{\prime}=2 x_{1}-7 x_{3} \\ x_{2}^{\prime}=2 x_{2}-3 x_{3} \\ x_{3}^{\prime}=x_{1}-15 x_{2}+x_{3}\end{array}\right.$
(b) $\left\{\begin{array}{l}x^{\prime}=\cos t x+t^{5} y-\frac{t^{7}}{7} \\ y^{\prime}=-\sin \left(t^{2}\right) x-e^{t} y+\frac{t^{9}}{9}\end{array}\right.$
4. Determine whether the following solutions of the the system $x^{\prime}(t)=A x(t)$ form a fundamental set of its solutions. If they do, give a general solution of the system.
(a) $x_{1}=e^{2013 t}\binom{-7}{3}, \quad x_{2}=e^{2013 t}\binom{14}{-6} ;$
(b) $x^{1}=\left(\begin{array}{c}e^{-4 t} \\ -2 e^{-4 t} \\ 3 e^{-4 t}\end{array}\right), \quad x^{2}=\left(\begin{array}{c}-2 \cos 5 t \\ -3 \sin 5 t \\ \sin 5 t\end{array}\right), \quad x^{3}=\left(\begin{array}{c}-2 \sin 5 t \\ 3 \cos 5 t \\ -\cos 5 t\end{array}\right)$,
