## due Monday Nov 18 at the beginning of class

Section covered 7.6

1. Given the following system of linear differential equations:

$$
\left\{\begin{align*}
x_{1}^{\prime} & =6 x_{1}-x_{2}  \tag{1}\\
x_{2}^{\prime} & =5 x_{1}+2 x_{2}
\end{align*}\right.
$$

(a) Find the general solution of the system (1).
(b) If $x(t)=\binom{x_{1}(t)}{x_{2}(t)}$ is a solution of (1), what is the limit of $x(t)$ as $t \rightarrow-\infty$. Does this limit depend on initial conditions?
(c) Find the solution of the system (1) satisfying the initial conditions: $x_{1}(0)=-3, \quad x_{2}(0)=2$.
2. Given the following system of linear differential equations:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=2 x_{1}+5 x_{2}+x_{3}  \tag{2}\\
x_{2}^{\prime}=-5 x_{1}-6 x_{2}+4 x_{3} \\
x_{3}^{\prime}=2 x_{3}
\end{array}\right.
$$

(a) It is known that $\left(\begin{array}{c}28 \\ -5 \\ 25\end{array}\right) e^{2 t}$ is a particular solution of the system and vector $\left(\begin{array}{c}4+3 i \\ -5 \\ 0\end{array}\right)$ is an eigenvector corresponding to the eigenvalue $-2+3 i$ of the coefficient matrix. Find the (real) general solution of the system (2).
(b) Find the solution of the the system (2) satisfying the initial condition $\left(\begin{array}{l}x_{1}(0) \\ x_{2}(0) \\ x_{3}(0)\end{array}\right)=\left(\begin{array}{c}-2 \\ 3 \\ 25\end{array}\right)$
(c) Find all $\alpha_{1}, \alpha_{2}, \alpha_{3}$ such that if $x(t)=\left(\begin{array}{l}x_{1}(t) \\ x_{2}(t) \\ x_{3}(t)\end{array}\right)$ is the solution of the system (2) with initial condition $x(0)=\left(\begin{array}{l}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right)$ then $x(t) \rightarrow 0$ as $t \rightarrow+\infty$.

