Homework Assignment \#17

Section covered: 7.5 (the case when there are repeated eigenvalues and a basis of eigenvectors)\& 7.8 (when there are repeated eigenvalues but no basis of eigenvectors)

1. Find the general solution of the following system of linear differential equations:

$$
\left\{\begin{aligned}
x_{1}^{\prime} & =x_{1}-2 x_{2}+2 x_{3} \\
x_{2}^{\prime} & =-2 x_{1}+x_{2}-2 x_{3} \\
x_{3}^{\prime} & =2 x_{1}-2 x_{2}+x_{3}
\end{aligned}\right.
$$

if it is known that $\left(\begin{array}{c}e^{5 t} \\ -e^{5 t} \\ e^{5 t}\end{array}\right)$ is a particular solution of this system.
2. Find the general solution of the following system of linear differential equations:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=-x_{1}+3 x_{2} \tag{1}\\
x_{2}^{\prime}=-3 x_{1}+5 x_{2}
\end{array}\right.
$$

3. (bonus 50 points) Find the general solution of the following system of linear differential equations:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=-x_{1}+x_{2}+x_{3} \\
x_{2}^{\prime}=-4 x_{1}-6 x_{2}-7 x_{3} \\
x_{3}^{\prime}=3 x_{1}+3 x_{2}+4 x_{3}
\end{array}\right.
$$

if it is known that the characteristic polynomial is equal to $-\lambda^{3}-3 \lambda^{2}+4$.

