due August 30, 2013 at the beginning of class

Topics covered : equations $y^{\prime}=a y+b$, where a and b are constant, and separable equations (corresponds to sections 1.2, 2.2 in the textbook). You do not need to use calculator for this assignment.

1. Assume that the velocity v of the falling object satisfies the following differential equation:

$$
\begin{equation*}
v^{\prime}(t)=9.8-\frac{v}{30} \tag{1}
\end{equation*}
$$

(a) Find a number v_{e} such that $v(t) \equiv v_{e}$ is a solution of equation (1) (in other words find the equilibrium solution of (1)).
(b) Solve the equation (1) with initial condition $v(0)=98$. What is the limit of this solution when $t \rightarrow+\infty$? How this limiting velocity is related to your answer in the item (a)?
(c) Find the time that must elapse for the object to reach $\frac{2}{3}$ of the limiting velocity found in the item (b).
(d) How far does the object fall in the time found in the item (c)?
2. Solve the following differential equations (find the general solutions):
(a) $\left(1+x^{2}\right)^{1 / 3} y^{\prime}+x y^{2}=0$
(b) $d x+x^{4} \sin y d y=0$;

