due September 4, 2013 at the beginning of class

Topics covered : separable equations (corresponds to sections 2.2); direction field and qualitative analysis of autonomous equations on the line (corresponds to sections 1.1 and 2.5).

1. Solve the following initial value problem:

$$
\left(x y^{2}+x\right) y^{\prime}(x)+x^{2} y-y=0, \quad y(1)=1
$$

2. Given the differential equation:

$$
\begin{equation*}
y^{\prime}=y^{2}+5 y+6 \tag{1}
\end{equation*}
$$

(a) Find all equilibrium points.
(b) Sketch a direction field.
(c) Based on the sketch of the direction field from the item (b) answer the following questions:
i. Let $y(t)$ be the solution of equation (1) satisfying the initial condition $y(0)=-\frac{5}{2}$. Find the limit of $y(t)$ when $t \rightarrow+\infty$ and the limit of $y(t)$ when $t \rightarrow-\infty$ (for this you do not need to find $y(t)$ explicitly).
ii. Find all y_{0} such that the solution of the equation (1) with the initial condition $y(0)=y_{0}$ has the same limit at $+\infty$ as the solution from the item (c) i.
iii. Let $y(t)$ be the solution of equation (1) with $y(0)=0$. Decide wether $y(t)$ is monotonically decreasing or increasing and find to what value it approaches when t increases (the value might be infinite).
(d) (bonus - 10 points) Find the solution of the equation (1) with $y(0)=0$ explicitly. Determine the interval in which this solution is defined.
3. (Bonus-30 points) Before attempting this problem look through the problem 30 of section 2.2, p. 49 of the textbook or review the end of your lecture notes from August 28/beginning of lecture notes of August 30, when we discussed the equation of the type $y^{\prime}=f\left(\frac{y}{x}\right)$ (so-called, homogeneous equations; the main idea here is to make the substitution $u(x)=\frac{y(x)}{x}$ to obtain a separable equation.). Then find the general solution of the following equations:
(a) $\left(y^{2}-2 x y\right) d x+x^{2} d y=0$;
(b) $x y^{\prime}=y-x e^{y / x}$.

