Homework Assignment 3 in Differential Equations, MATH308

due to Feb 15, 2012

Topics covered : exact equations; solutions of linear homogeneous equations of second order, Wronskian; linear homogeneous equations of second order with constant coefficient: the case of two distinct real roots of the characteristic polynomial (corresponds to sections 2.6, 3.2, and 3.1 in the textbook).

1. (a) Determine whether the differential equation $\left(2-9 x y^{2}\right) x+\left(4 y^{2}-6 x^{3}\right) y \frac{d y}{d x}=0$ is exact. If it is exact, find the general solution;
(b) Find the values of parameters a and b for which the differential equation

$$
\left(a x^{2} y+y^{3}\right) d x+\left(\frac{1}{3} x^{3}+b x y^{2}\right) d y=0
$$

is exact, and then solve it in the case of those values of a and b.
(c) Show that the differential equation $\left(x^{2}+y^{2}+x\right) d x+y d y=0$ is not exact but becomes exact when multiplied by the integrating factor $\mu(x, y)=\frac{1}{x^{2}+y^{2}}$. Then solve the equation.
2. (a) Find the general solution of differential equation $y^{\prime \prime}+y^{\prime}-6 y=0$;
(b) Find the solution of the same equation satisfying the initial condition $y(0)=1, y^{\prime}(0)=\alpha$. Then find α so that the solution approaches zero as $t \rightarrow+\infty$.
(c) Consider the differential equation

$$
y^{\prime \prime}-2 \beta y^{\prime}+\left(\beta^{2}-1\right) y=0 .
$$

(here β is a parameter). Determine the values of β, if any, for which all solutions tend to zero as $t \rightarrow \infty$; also determine the values of β, if any, for which all (nonzero) solutions become unbounded as $t \rightarrow+\infty$.
3. (a) Find the Wronskian of the functions $e^{-3 t} \cos (2 t)$ and $e^{-3 t} \sin (2 t)$;
(b) Consider the differential equation

$$
\begin{equation*}
t^{2} y^{\prime \prime}-3 t y^{\prime}+3 y=0, \quad t>0 \tag{1}
\end{equation*}
$$

Verify that $y_{1}(t)=t$ and $y_{1}(t)=t^{3}$ are solutions of this equation. Then prove, using the notion of Wronskian, that $y(t)=c_{1} t+c_{2} t^{3}$ is the general solution of this equation (on $t>0$).
(c) If $W(f, g)$ is the Wronskian of functions f and g and if $u=3 f-4 g, v=2 f+3 g$, find the Wronskian $W(u, v)$ of u and v in terms of $W(f, g)$
4. (bonus-20 points) Read the formulation and the proof of Theorem 3.2.6 on the page 153 (Abel's Theorem). Then using this theorem:
(a) Find the Wronskian of two solutions of the equation

$$
t^{2} y^{\prime \prime}+t(t-3) y^{\prime}+t^{3} y=0
$$

without solving the equation;
(b) If y_{1} and y_{2} are fundamental set of solutions of $t y^{\prime \prime}-5 y^{\prime}+\sin t y=0$ and if $W\left(y_{1}, y_{2}\right)(2)=2$, find the value of $W\left(y_{1}, y_{2}\right)(3)$.

