Homework Assignment 6 in Differential Equations, MATH308

due March 21, 2012
Topics covered : definition and properties of Laplace transform; inverse Laplace transform of rational functions; solution of initial value problems using Laplace transform; step function and Laplace transform of discontinuous functions (corresponds to sections 6.1, 6.2, 6.3 in the textbook)

1. Recall that the hyperbolic cosine $\cosh t$ and hyperbolic sine $\sinh t$ are defined as follows:

$$
\cosh t=\frac{e^{t}+e^{-t}}{2}, \quad \sinh t=\frac{e^{t}-e^{-t}}{2}
$$

Using the definition of the Laplace transform, find the Laplace transform of the given function (below a and b are real constants):
(a) $f(t)=\sinh b t$;
(b) $f(t)=e^{a t} \cosh b t$
(show your work).
2. Find the inverse Laplace transform of the given function:
(a) $F(s)=\frac{3 s}{s^{2}+2 s-8}$;
(b) $F(s)=\frac{2 s+5}{s^{2}+6 s+25}$
3. Solve for $Y(s)$, the Laplace transform of the solution $y(t)$ to the given initial value problem (you do not need to find the solution $y(t)$ itself here):
(a) $y^{\prime \prime}-3 y^{\prime}+2 y=\cos t, \quad y(0)=0, y^{\prime}(0)=-1$;
(b) $y^{\prime \prime}+y^{\prime}-y=t^{3}, \quad y(0)=1, y^{\prime}(0)=0$
4. Using the method of Laplace transform solve the following initial value problem:

$$
y^{\prime \prime}+6 y^{\prime}+5 y=12 e^{t}, \quad y(0)=-1, y^{\prime}(0)=7
$$

5. (a) Find the Laplace transform of the function

$$
f(t)= \begin{cases}0 & t<1 \\ t & 1 \leq t<2 \\ 1 & 2 \leq t\end{cases}
$$

(b) Find the inverse Laplace transform of the function $\frac{e^{-2 s}-3 e^{-4 s}}{s+2}$.

