Homework Assignment 7 in Differential Equations, MATH308

due March 28, 2012

Topics covered : initial value problems with discontinuous and impulse forcing functions; convolution integrals (corresponds to sections 6.4, 6.5, 6.6 in the textbook)

1. Find the solution of the initial value problem $y^{\prime \prime}+4 y=g(t) ; \quad y(0)=1, y^{\prime}(0)=3$, where

$$
g(t)=\left\{\begin{array}{l}
\sin t, \quad 0 \leq t<2 \pi \\
0, \quad t \geq 2 \pi
\end{array}\right.
$$

2. Find the solution of the initial value problem $y^{\prime \prime}+5 y^{\prime}+6 y=g(t), \quad y(0)=0, y^{\prime}(0)=2$, where

$$
g(t)= \begin{cases}0 & t<1 \\ t & 1 \leq t<5 \\ 1 & t \geq 5\end{cases}
$$

3. Solve the initial value problem and sketch a graph of the solution:

$$
y^{\prime \prime}+y=-\delta(t-\pi)+\delta(t-2 \pi) ; \quad y(0)=0, y^{\prime}(0)=1 .
$$

4. Solve the initial value problem $y^{\prime \prime}+6 y^{\prime \prime}+5 y=e^{t} \delta(t-1) ; \quad y(0)=0, y^{\prime}(0)=4$.
5. Use the convolution theorem to find the inverse Laplace transform of the given function:
(a) $\frac{1}{s^{3}\left(s^{2}+1\right)}$;
(b) $\frac{s}{\left(s^{2}+1\right)^{2}}$.
6. (a) Express the solution of the given initial value problem in terms of a convolution integral:

$$
\begin{equation*}
y^{\prime \prime}-2 y^{\prime}+5 y=g(t) ; \quad y(0)=0, y^{\prime}(0)=2 \tag{1}
\end{equation*}
$$

(b) (bonus-15 points) Find the solution of the same initial value problem (1) using the method of variation of parameter. Show that your answer coincides with the answer obtained in item a)
7. (bonus-15 points) (on Laplace transform of periodic functions) Recall that a function $f(t)$ is said to be periodic of period T if $f(t+T)=f(t)$ for all t. In this exercise you can use the following theorem: if $f(t)$ is periodic with period T and piecewise continuous on the interval $[0, T]$, then the Laplace transform $F(s)$ of $f(t)$ satisfies:

$$
\begin{equation*}
F(s)=\frac{1}{1-e^{-s T}} \int_{0}^{T} e^{-s t} f(t) d t \tag{2}
\end{equation*}
$$

(I posted the proof of this theorem in the class announcements of $03 / 21 / 2012$). Graph the given periodic function $f(t)$ and find its Laplace transform based on formula (2) if
(a) $f(t)=\left\{\begin{array}{ll}1, & 0 \leq t<1, \\ 0, & 1 \leq t<2,\end{array} \quad\right.$ and $f(t)$ has period 2 ;
(b) $f(t)=t, \quad 0 \leq t<1$, and $f(t)$ has period 1 .

