Homework Assignment #7

Fall 2013 - MATH308

due Monday September 30

<u>Topics covered</u> : linear homogeneous equations of second order with constant coefficient: the cases of repeated roots, the method of reduction of order (section 3.4)

- 1. Consider the differential equation 25y'' 20y' + 4y = 0.
 - (a) Find the general solution of this equation;
 - (b) Find the solution of this equation satisfying the initial conditions $y(0) = \alpha$, y'(0) = 5;
 - (c) For the solutions obtained in the previous item find the values of α , if any, for which the solutions tends to $+\infty$ as $t \to +\infty$ and the values of α , if any, for which the solutions tend to $-\infty$ as $t \to +\infty$.
- 2. Given the solution $y_1(t) = t^2$ of the differential equation

$$t^2y'' + 2ty' - 6y = 0, \quad t > 0.$$

Use the method of reduction of order to find a second solution $y_2(t)$ of this equation such that $\{y_1(t), y_2(t)\}$ is a fundamental set of solutions on t > 0.