due Monday September 30

Topics covered : linear homogeneous equations of second order with constant coefficient: the cases of repeated roots, the method of reduction of order (section 3.4)

1. Consider the differential equation $25 y^{\prime \prime}-20 y^{\prime}+4 y=0$.
(a) Find the general solution of this equation;
(b) Find the solution of this equation satisfying the initial conditions $y(0)=\alpha, y^{\prime}(0)=5$;
(c) For the solutions obtained in the previous item find the values of α, if any, for which the solutions tends to $+\infty$ as $t \rightarrow+\infty$ and the values of α, if any, for which the solutions tend to $-\infty$ as $t \rightarrow+\infty$.
2. Given the solution $y_{1}(t)=t^{2}$ of the differential equation

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-6 y=0, \quad t>0
$$

Use the method of reduction of order to find a second solution $y_{2}(t)$ of this equation such that $\left\{y_{1}(t), y_{2}(t)\right\}$ is a fundamental set of solutions on $t>0$.

