Homework Assignment 8 in Differential Equations, MATH308

1. Let $A=\left(\begin{array}{cc}2 & -1 \\ -3 & 4\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right)$. Compute $A B-B A$.
2. Transform the given equation into a system of first order differential equations:
(a) $u^{\prime \prime}+3 u^{\prime}+4 u=\cos t$
(b) $y^{(3)}-2 y^{\prime}+y=0$
3. Express the given system of linear differential equations in matrix form:
(a) $\left\{\begin{array}{l}x_{1}^{\prime}=2 x_{1}-3 x_{3} \\ x_{2}^{\prime}=x_{2}+4 x_{3} \\ x_{3}^{\prime}=x_{1}+x_{3}\end{array}\right.$
(b) $\left\{\begin{array}{l}x^{\prime}=(\sin t) x+e^{t} y+\cos t \\ y^{\prime}=(\cos t) x-e^{t} y\end{array}\right.$
4. Determine whether the following solutions of the the system $x^{\prime}(t)=A x(t)$ form a fundamental set of its solutions. If they do, give a general solution of the system.
(a) $x^{1}=e^{2 t}\binom{1}{-2}, \quad x^{2}=e^{2 t}\binom{-2}{4}$
(b) $x^{1}=\left(\begin{array}{c}e^{t} \\ e^{t} \\ e^{t}\end{array}\right), \quad x^{2}=\left(\begin{array}{c}\sin t \\ \cos t \\ -\sin t\end{array}\right), \quad x^{3}=\left(\begin{array}{c}-\cos t \\ \sin t \\ \cos t\end{array}\right)$
5. Given the following system of linear differential equations:

$$
\left\{\begin{align*}
x_{1}^{\prime} & =x_{1}+3 x_{2} \tag{1}\\
x_{2}^{\prime} & =12 x_{1}+x_{2}
\end{align*}\right.
$$

(a) Find the general solution of the system (1).
(b) Find the solution of the the system (1) satisfying the initial conditions: $x_{1}(0)=1, \quad x_{2}(0)=1$.
(c) Find all α_{1} and α_{2} such that if $x(t)=\binom{x_{1}(t)}{x_{2}(t)}$ is the solution of of the system (1) with initial condition $x(0)=\binom{\alpha_{1}}{\alpha_{2}}$ then $x(t) \rightarrow 0$ as $t \rightarrow \infty$.
(d) Find all β_{1} and β_{2} such that if $x(t)=\binom{x_{1}(t)}{x_{2}(t)}$ is the solution of of the system (1) with initial condition $x(0)=\binom{\beta_{1}}{\beta_{2}}$ then $x(t) \rightarrow 0$ as $t \rightarrow-\infty$.
6. Given the following system of linear differential equations:

$$
\left\{\begin{align*}
x_{1}^{\prime} & =x_{1}+2 x_{2}+2 x_{3} \tag{2}\\
x_{2}^{\prime} & =2 x_{1}+3 x_{3} \\
x_{3}^{\prime} & =2 x_{1}+3 x_{2}
\end{align*}\right.
$$

(a) Find the general solution of the system (2).
(b) Find the solution of the the system (2) satisfying the initial condition $\left(\begin{array}{l}x_{1}(0) \\ x_{2}(0) \\ x_{3}(0)\end{array}\right)=\left(\begin{array}{c}3 \\ -2 \\ 2\end{array}\right)$

