1. (a) For each of the following equations write down the form in which a particular solution should be found according to the method of undetermined coefficients. Explain how to find and what is multiplicity, s, in each case. (You do not need to find the value of the undetermined coefficient/coefficients here):
i. $7 y^{\prime \prime}-20 y^{\prime}-3 y=2013 e^{-3 t}$;
ii. $7 y^{\prime \prime}-20 y^{\prime}-3 y=7 e^{3 t}$;
iii. $7 y^{\prime \prime}-20 y^{\prime}-3 y=7 e^{3 t}-5 e^{-t / 7}$;
iv. $7 y^{\prime \prime}-20 y^{\prime}-3 y=e^{3 t} \sin t$;
v. $7 y^{\prime \prime}-20 y^{\prime}-21 y=71(3 t-1) e^{3 t}$;
vi. $9 y^{\prime \prime}-6 y^{\prime}+y=51 e^{2 t}$;
vii. $9 y^{\prime \prime}-6 y^{\prime}+y=2 e^{t / 3}-2 e^{t / 3} \sin 2 t$;
viii. $y^{\prime \prime}+\omega_{0}^{2} y=2 \cos \omega t+\sin \omega t$ where $\omega^{2} \neq \omega_{0}^{2}$
ix. $y^{\prime \prime}+\omega_{0}^{2} y=2 \cos \omega t+\sin \omega t$ where $\omega^{2}=\omega_{0}^{2}$
x. $18 y^{\prime \prime}+30 y^{\prime}+17 y=e^{-5 t / 6}\left(7 \cos \left(\frac{t}{2}\right)+5 \sin \left(\frac{t}{2}\right)\right)$
(b) Find the general solution for equation in the item (a)(iv).
(c) Find the general solution for equation in the item (a)(viii).
(d) Find the general solution for equation in the item (b)(ix).
