REVIEW: Power Series

DEFINITION 1. A power series about $x=x_{0}$ (or centered at $x=x_{0}$), or just power series, is any series that can be written in the form

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

where x_{0} and a_{n} are numbers. The a_{n} 's are called the coefficients of the power series.
Absolute Convergence: The series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is said to converge absolutely at x if $\sum_{n=0}^{\infty}\left|a_{n}\right|\left|x-x_{0}\right|^{n}$ converges.

If a series converges absolutely then it converges (But in general not vice versa).
EXAMPLE 2. The series $\sum_{n=1}^{\infty} \frac{x^{n}}{n}=\lim _{m \rightarrow \infty}$ converges at $x=-1$, but it doesn't converges absolutely:

$$
1-\frac{1}{2}+\frac{1}{3}-\ldots=\ln 2
$$

but

$$
1+\frac{1}{2}+\frac{1}{3}+\ldots
$$

is divergent.
Fact: If the series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ converges absolutely at $x=x_{1}$ then it converges absolutely for all x such that $\left|x-x_{0}\right|<\left|x_{1}-x_{0}\right|$

THEOREM 3. For a given power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ there are only 3 possibilities:

1. The series converges only for $x=x_{0}$.
2. The series converges for all x.
3. There is $R>0$ such that the series converges if $\left|x-x_{0}\right|<R$ and diverges if $\left|x-x_{0}\right|>$ R. We call such R the radius of convergence.

REMARK 4. In case 1 of the theorem we say that $R=0$ and in case 2 we say that $R=\infty$
How to find Radius of convergence: If $a_{n} \neq 0$ for any n and $\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|$
exists, then

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
$$

Geometric Series: $1+x+x^{2}+x^{3}+\ldots=\sum_{n=0}^{\infty} x^{n}=\lim _{m \rightarrow \infty} \sum_{n=1}^{m} x^{n}=\lim _{m \rightarrow \infty} \sum_{n=1}^{m} \frac{1-x^{m+1}}{1-x}=\frac{1}{1-x}$ provided $|x|<1$. The series diverges if $|x| \geq 1$. We can use also the ratio test: $a_{n}=1$ and then $R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=1$
Another example: for $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$ we have $a_{n}=\frac{1}{n}$ and thus

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{\frac{1}{n+1}}=\lim _{n \rightarrow \infty} \frac{n+1}{n}=1
$$

The Taylor series for $f(x)$ about $x=x_{0}$
Assume that f has derivatives of any order at $x=x_{0}$. Then

$$
f(x)=\sum_{n=0}^{m} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+\frac{f^{(m+1)}(c)}{(m+1)!}\left(x-x_{0}\right)^{m+1}
$$

where c is between x and x_{0}. The remainder converges to zero at least as fast as $\left(x-x_{0}\right)^{m+1}$ when $x \rightarrow x_{0}$. Formally we can consider the following power series:

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \\
& \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots \\
& \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots
\end{aligned}
$$

