Series of Solutions near an Ordinary Point (sections 5.2 and 5.3)

We consider differential equations of the type

$$P(x)y'' + Q(x)y' + R(x)y = 0$$
(1)

DEFINITION 1. A point x_0 is called an ordinary point of differential equation (1) if the functions $p(x) := \frac{Q(x)}{P(x)}$ and $q(x) := \frac{R(x)}{P(x)}$ are analytic at x_0 , maybe after defining $p(x_0)$ and $q(x_0)$ appropriately (i.e. by continuity). Otherwise, the point x_0 is called a singular point of differential equation (1).

EXAMPLE 2. If the functions P(x), Q(x), and R(x) are analytic and $P(x_0) \neq 0$, then x_0 is an ordinary point of (1).

REMARK 3. In general, if $P(x_0) = 0$ it does not mean that x_0 is a singular point of (1), because it might be that also $Q(x_0) = 0$ and $R(x_0) = 0$ and the functions $\frac{Q(x)}{P(x)}$, $\frac{R(x)}{P(x)}$ might be defined at x_0 by continuity (namely $\lim_{x \to x_0} \frac{Q(x)}{P(x)}$ and $\lim_{x \to x_0} \frac{R(x)}{P(x)}$ may exist and be finite).

EXAMPLE 4. Given

$$(1 - x2)y'' + (x2 + x - 2)y'' + (x3 - 1)y = 0$$

a) is $x_0 = 1$ ordinary or singular?

b) is $x_0 = -1$ ordinary or singular?

EXAMPLE 5. Given

$$\sin^2 x \, y'' + x^2 y' + (1 - \cos x)y = 0$$

a) is $x_0 = 0$ ordinary or singular?

b) is $x_0 = 2\pi$ ordinary or singular?

THEOREM 6. 1. If x_0 is an ordinary point of differential equation (1), then any solution y(x)of (1) is analytic at $x = x_0$, i.e can be found as a power series $\sum_{n=0}^{\infty} a_n (x - x_0)^n$.

2. The radius of convergence of this series is at least as large as the minimum of the radii of convergence of the Taylor series at x_0 of functions $p(x) := \frac{Q(x)}{P(x)}$ and $q(x) := \frac{R(x)}{P(x)}$.

REMARK 7. The coefficients a_n of the series $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ with $n \ge 2$ are uniquely determined by the first two coefficients a_0 and a_1 . Moreover, a_n are expressed linearly in terms of a_0 and a_1 so that

$$y(x) = a_0 y_1(x) + a_1 y_2(x),$$

where $y_1(x)$ is the solution satisfying the initial conditions $y_1(x_0) = 1$, $y'_1(x_0) = 0$ and $y_2(x)$ is the solution satisfying the initial conditions $y_2(x_0) = 0$, $y'_2(x_0) = 1$.

EXAMPLE 8. Given differential equation

$$xy'' + y' + xy = 0.$$

a) Seek power series solutions of this equation about $x_0 = 1$: find the recurrence relation for coefficients of the power series about $x_0 = 1$ representing a solution (in general, a recurrence relation is a relation expressing the *n*th coefficients a_n in terms of some previous ones).

b) Find the first five terms in the power expansion about $x_0 = 1$ of the solution of the equation (1) satisfying initial conditions y(1) = 3, y'(1) = 1.

Radius of convergence as the minimal distance to singularities.

There is a more elegant way to find the radius of convergence of the Taylor series at x_0 of the analytic function f rather than calculating the coefficients of this Taylor series (i.e. derivatives of any order of f at x_0). For this we pass to the complex plane.

Assume for simplicity that $f(x) = \frac{Q}{P}$, where Q and P are polynomials and all common linear factors (in general with complex coefficients) of Q and P are canceled. Then f is analytic at x_0 if and only if $P(x_0) \neq 0$ and the radius of convergence of the Taylor series about x_0 is equal to the distance to the nearest complex zero of P.

EXAMPLE 9. Given $f(x) = \frac{1}{1+x^2}$ what is the radius of convergence of the Taylor series of f

a) around $x_0 = 0$

b) around $x_0 = 1$

c) around $x_0 = 2$

REMARK 10. Note that the function $f(x) = \frac{1}{1+x^2}$ of the previous example is defined for all real x, so we see the "problem" (non-convergence of Taylor series for |x| > 1) only when passing to the complex plane. This is another example when the use of complex numbers is very natural and helpful.

EXAMPLE 11. Determine a lower bound for the radius of convergence of series solutions about each given point of the following equation:

a) xy'' + y' + xy = 0 about $x_0 = 1$ (as in Example 8)

b)
$$(x^2 + 2x + 2)y'' + xy' + 4y = 0$$
 about

i)
$$x_0 = 0$$

ii)
$$x_0 = -1$$

iii)
$$x_0 = -3$$