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Abstract

We present an algorithm that verifies if two unlabeled configurations of N points

in R
d are or are not an orthogonal transformation of one another, and if applicable,

explicitly compute that transformation. We also give a formula for the orthogonal

transformation in the case of noisy measurements.
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1 Introduction

In computer vision applications it is often necessary to match an unidentified image to an
image from a library of known images such as fingerprints, faces and others. This process is
often done by identifying points (landmarks) on the incoming image and checking whether
they match the point configuration from an already indexed image in an existing collec-
tion. An image does not change under rigid motions (translations, rotations, reflections and
compositions of those), which are called isometric affine transformations.

If we denote by O(d) the group of the d × d orthogonal matrices, and by SN the group
of all permutations of {1, 2, . . . , N}, a rigid motion R in R

d is defined by

Rx = Ax+ b, x ∈ R
d, (1.1)

where A ∈ O(d) is a fixed matrix , and b ∈ R
d is a fixed vector . The problem of matching

two images can be formulated in the following way: given two collections of N points P =
{p1, . . . ,pN} and Q = {q1, . . . ,qN} in R

d, is there an orthogonal matrix A ∈ O(d), a vector
b ∈ R

d, and a permutation π ∈ SN , such that in the Euclidean norm ‖ · ‖, the rigid motion
defined by (1.1), satisfies

‖Rpi − qπ(i)‖ ≤ ε, i = 1, . . . , N, (1.2)
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for a sufficiently small ε? A positive answer to this question would mean that we have found
a match, namely the two images whose representatives are the two collections of points
are the same. The presence of ε in (1.2) reflects the presence of noise due to numerical or
measurement errors.

The problem of matching two collections of points has been vastly studied using different
approaches. For example, in [3, 4, 5], the authors investigate a point set via the set of
distances between each possible pair of points in the configuration, which is called distance
distribution. The main result of this approach, see [3, 4], is that the set of point configurations
in R

d that are not uniquely determined from their distance distribution is contained in the
zero set of a non-zero polynomial, and thus has Lebesgue measure zero in its respective
space. However, the degree of this polynomial grows exponentially in the number of points
N which makes its evaluation unfeasible even for moderate values of N . In addition, there
is no theorem investigating the problem in the presence of noise. On the other hand, even if
we have a noiseless distance distribution that uniquely, up to a rigid motion, determines a
point configuration, the best known algorithms to match such configurations, according to
[4] and the references therein, are of the order O(Nd2+3d+1).

Other approaches to matching point collections are based on the Gramians of the point
configurations. These methods have the advantage that they retain the information about
the labeling (indexing) of the points in the configuration. For example, it is a well known
fact that given two point configurations P = {p1, . . . ,pN} and Q = {q1, . . . ,qN} in R

d,
there exists a rigid motion R such that Rpi = qi, i = 1, . . . , N , if and only if the Gramians
P TP = QTQ, where P and Q are the matrices with columns pi− p̄ and qi− q̄, respectively,
with q̄ = 1

N

∑N
i=1 qi and p̄ = 1

N

∑N
i=1 pi.

In this paper, we first investigate the matching and registration of unlabeled point con-
figuration in the absence of noise using the Gramian approach. We propose and test a new
algorithm that verifies whether two unlabeled configurations of N points in R

d are or are
not an orthogonal transformation of one another, and if applicable, explicitly compute that
transformation. The algorithm is based on ideas used in variable decorrelation, which is rou-
tinely solved by principal component analysis (PCA). Compared to the

(
N
2

)
numbers used

in the distance distribution approach, our algorithm uses at most d(1 + d + 2N) numbers
to process a point configuration, which reduces the memory cost and the data access time.
Existing algorithms for matching unlabeled point clouds are based on iterative closest point
methods, see [14, 17], and deal with the registration of unlabeled point clouds of different
sizes in the presence of noise. Although quite useful in practice, these methods often assume
certain additional information about the point cloud. For example, they assume that the
rigid motion R is a small perturbation or it is roughly known, or that the nature of the cloud
is such that there is a fast procedure to label a reasonably large subcloud and thus compute
the rigid motion based on that labeled subcollection. In contrast to these techniques, our al-
gorithm does not require any information about the geometry of the cloud or the the nature
of the rigid motion, but is applicable only to noiseless same size point clouds.

Here, we also present and test a theoretical result, see Theorem 4.2, where we explicitly
compute the orthogonal matrix A, see (1.1), for labeled point clouds in the presence of noise.
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More precisely, we show that if ε is small enough, and

P TP = QTQ+ εM, (1.3)

where the entries of the matrix M are bounded, there is an orthogonal matrix A = A(ε)
(which we construct), such that ‖AP − Q‖ ≤ εc̃N2, with explicitly computed constant c̃.
The converse is not true and we show it by constructing a counterexample.

Our result is closely related to the stability of the orthogonal Procrustes problem for the
matrices P and Q. The latter is the problem of finding an orthogonal matrix A, such that
the Frobenius norm ‖AP −Q‖F is minimized. In the case when both P and Q have full row
rank, the problem was solved in [10]. The solution of the general problem can be found in
[11, 15], and is given by the matrix A = UV T , where U and V come form the singular value
decomposition of Z = QP T , QP T = UΣZV

T . For further details on the problem and its
solution, we refer the reader to [9, 12] and the references therein.

The stability of A and how noise in the data affects the computed rigid body motion
is an important issue in practical applications. In [7], an explicit expression of the error
in A, to first order, is given in terms of the errors in P and Q when d = 3. While this
result is much more specific than general error bounds that have been established before, it
requires the exact values of the matrices P , Q and A. Our result from Theorem 4.2 does
not require such knowledge and is in the spirit of the work in [16], where supremum bounds
for the perturbation error in the solution A of the orthogonal Procrustes problem with the
additional restriction that A has a positive determinant, see [11], are derived.

2 Preliminaries

This section contains well known facts from linear algebra that will be used throughout the
paper, as well as certain Procrustes analysis results, stated for self containment. Some of
the proofs are included for clarity, while the basic results are only stated.

2.1 Matrices

Let π ∈ SN be a permutation of {1, 2, . . . , N}. Then the N × N matrix Eπ with columns
{eπ(1), . . . , eπ(N)}, where ej is the j-th element of the canonical basis of RN is called the
permutation matrix associated to π. Multiplying a matrix A on the right by Eπ permutes
the columns of A by π.

Lemma 2.1 Let Eπ be the permutation matrix associated to π ∈ SN . Let A and B be two

positive semidefinite symmetric matrices such that B = EπAE
T
π . Then the set of eigenvalues

of A and B are identical, including their algebraic multiplicity, and there exist eigenvalue

decompositions of A = UAΛU
T
A and B = UBΛU

T
B , such that Eπ = UBU

T
A .
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It is important to notice that Lemma 2.1 is an existence result since the eigenvalue
decomposition of a matrix is not unique. In general, given arbitrary decompositions A =
ŨAΛŨ

T
A and B = ŨBΛŨ

T
B for the positive semidefinite symmetric matrices A and B, the

matrix ŨBŨ
T
A need not be a permutation matrix.

Lemma 2.2 Let P and Q be two d × N matrices. Then P TP = QTQ if and only if there

is a d× d orthogonal matrix A such that AP = Q. We call such a matrix A an equivalence

matrix.

Proof. IfAP = Q, where A is orthogonal matrix, we haveQTQ = (AP )TAP = P T (ATA)P =
P TP . Conversely, if P TP = QTQ, then P and Q have the same singular values, and the
same right singular vectors. Then, by singular value decomposition, there are d × d or-
thogonal matrices UP and UQ such that P = UPΣV

T and Q = UQΣV
T , where V is the

N × N orthogonal matrix containing the eigenvectors of P TP . Therefore Q = UQΣV
T =

(UQU
T
P )UPΣV

T = AP , where A = UQU
T
P . �

Finally, in this paper, unless stated otherwise, we use the Euclidean norm of a vector
x ∈ R

N and the corresponding induced matrix norm of a d×N matrix A,

‖A‖ = max
‖x‖=1

‖Ax‖.

Note, that the induced matrix Euclidean norm is also the spectral norm of A, namely

‖A‖ =
√

λmax(ATA) =
√
λmax(AAT ) = ‖AT‖,

where λmax(A
TA) is the maximal eigenvalue of ATA, and it is submultiplicative, that is

‖AB‖ ≤ ‖A‖ · ‖B‖.

2.2 Labeled point configurations

We fix a coordinate system in R
d and denote by P := {p1, . . . ,pN} and Q := {q1, . . . ,pN}

two collections of N points in R
d, where pi is the coordinate vector of the i-th point from P

with respect to this coordinate system. Let p̄ = 1
N
(p1+ · · ·+pN ) and q̄ = 1

N
(q1+ · · ·+qN)

be the center of mass of P and Q, respectively, P̄ and Q̄ be the new (centered) collections
P̄ := {p1 − p̄, . . . ,pN − p̄} and Q̄ := {q1 − q̄, . . . ,qN − q̄}, and P and Q be the d × N
matrices with columns pi − p̄ and qi − q̄, respectively.

If there is a rigid motion R such that Rpi = qi, i = 1, . . . , N , we say that P and Q
are identically equivalent. The following theorem, based on techniques more extensively
discussed in [13], provides a tool to find R if it exists.

Theorem 2.3 The following statements are equivalent.

(i) P and Q are identically equivalent.
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(ii) P TP = QTQ.

(iii) There is an orthogonal matrix A such that AP = Q.

Proof. The equivalence for (ii) and (iii) has been proven in Lemma 2.2.

If there is a rigid motion R, Rx = Ax + b with an orthogonal matrix A and a vector
b, such that Rpi = qi, i = 1, . . . , N , it is easy to verify that Rp̄ = q̄. Therefore, qi − q̄ =
Rpi−Rp̄ = A(pi− p̄) for every i = 1, . . . , N , and thus AP = Q. Conversely, if AP = Q for
an orthogonal matrix A, then qi − q̄ = A(pi − p̄) and therefore qi = Api + (q̄− p̄) = Rpi,
with b = q̄− p̄, i = 1, . . . , N . This establishes the equivalence between (i) and (iii). �

Note, that given P TP = QTQ, the matrix A can be computed directly if P has rank d.
In this case PP T is invertible, and it can be shown that A = Q(PP T )−1P T .

In some applications, it is often needed to compare point clouds that are captured at
different resolutions where the conversion factor is not necessarily available. In this case, in
addition to the rigid motion R, one has to find the dilation factor s, such that qi = sRpi,
or equivalently Rpi = s−1qi, i = 1, . . . , N . By Theorem 2.3, there is an orthogonal matrix
A such that A(pi − p̄) = s−1(qi − q̄). Note that since A is an orthogonal matrix, we have
‖Ax‖2 = ‖x‖2 for any x ∈ R

d, and therefore s2
∑N

i=1 ‖pi − p̄‖2 =
∑N

i=1 ‖qi − q̄‖2. Hence, s
is given by

s =

(∑N
i=1 ‖qi − q̄‖2

∑N
i=1 ‖pi − p̄‖2

) 1

2

=
‖Q‖F
‖P‖F

,

where ‖ · ‖F is the Frobenius norm. The choice of computing the dilation factor by the use of
the entire point collection, instead of just one of the samples has two goals. First, it can be
applied even in the unlabeled case, and second, it provides robustness to noise, as explored
in [13].

3 Unlabeled point configurations

Often, when landmarks are extracted from an image to generate a point configuration P, it
is not possible to a priori enumerate the points in a manner consistent with the enumeration
of an existing point collection Q in our library. In this case, there exist a rigid motion R
and a permutation π ∈ SN , such that Rpi = qπ(i), i = 1, . . . , N , and we call the collections
P and Q equivalent. This section explores how, given two point configurations, we decide
whether they are equivalent.

Theorem 3.1 Let P = {p1, . . . ,pN} and Q = {q1, . . . ,qN} be two collections of N points

in R
d. The following statements are equivalent.

(i) P and Q are equivalent.
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(ii) There is a permutation matrix Eπ, such that P TP = ET
πQ

TQEπ.

(iii) There is an orthogonal matrix A, completely determined in Lemma 2.2 and a permu-

tation matrix Eπ, such that AP = QEπ.

Moreover, Eπ = UQU
T
P , where UP and UQ are orthogonal matrices from an eigenvalue de-

composition of P TP and QTQ, respectively. Note that one does not know which particular

eigenvalue decomposition will provide the matrices UP and UQ.

Proof. Let π ∈ SN be the permutation from the definition of equivalence of the two
collections P and Q. We consider the permutation matrix Eπ, associated with π. We
denote by Qπ the re-enumerated collection of points Q with corresponding matrix Qπ with
columns qπ(i) − q̄. Note, that Qπ = QEπ. Then, P and Q are equivalent if and only
if P and Qπ are identically equivalent, which using Theorem 2.3, is true if and only if
P TP = ET

πQ
TQEπ = Eπ−1QTQE−1

π−1 . By Lemma 2.1, there are orthogonal matrices UP and
UQ such that P TP = UPΛU

T
P and QTQ = UQΛU

T
Q , such that Eπ−1 = UPU

T
Q , and therefore

Eπ = UQU
T
P .

Relation (ii) can be written as P TP = (QEπ)
TQEπ. By Lemma 2.2 this is true if and

only if there is an orthogonal matrix A, described in this lemma, such that AP = QEπ. �

Notice, that the matrix QQT does not depend on the permutation of the columns of Q,
since QπQ

T
π = QEπE

T
πQ

T = QQT . The next lemma provides some insight on whether a
suitable matrix A, related to the rigid motion R exists and if it does, gives another way of
its explicit construction.

Lemma 3.2 Let P = {p1, . . . ,pN} and Q = {q1, . . . ,qN} be two equivalent collections

of N points in R
d. Then the d × d matrices PP T and QQT have the same eigenvalues

0 ≤ λ1 ≤ . . . ≤ λd, including their algebraic multiplicities. Let vi and wi be the orthonormal

eigenvectors of PP T and QQT corresponding to λi, i = 1, . . . , d, respectively. Let V and W
be the orthogonal matrices with columns {vi} and {wi}. If the eigenvalues {λi} are distinct,

then there are integers ǫi = ±1, i = 1, . . . , d, and a permutation π ∈ SN , determined from

Qπ = AP , such that

< pk − p̄,vi >= ǫi < qπ(k) − q̄,wi >, k = 1, . . . , N, i = 1, . . . , d. (3.4)

Moreover, if E := diag(ǫ1, . . . , ǫd), then the equivalence matrix A can be written as A =
WEV T .

Proof. It follows from Theorem 3.1 that if P and Q are equivalent, then there is an
orthogonal matrix A, such that AP = QEπ for some permutation π ∈ SN , with π = id if
the points are identically equivalent. Then we have

QQT = APET
πEπP

TAT = A(PP T )AT .
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Since PP T is a real symmetric matrix, and vi, i = 1, . . . , d, are orthonormal eigenvectors
of PP T corresponding to the eigenvalues λ1 ≤ . . . ≤ λd, we have PP T = V ΛPV

T , with
ΛP = diag(λ1, . . . , λd), and therefore

QQT = (AV )ΛP (AV )T .

Clearly, AV is an orthogonal matrix as a product of two orthogonal matrices. Also, QQT

and PP T have the same eigenvalues, including their algebraic multiplicities, and AV is a
matrix whose columns {Avi} are eigenvectors of QQT .

Let us consider now the case when PP T and QQT have d distinct eigenvalues λi. Then
the dimension of the corresponding eigenspaces Ker(PP T − λiI) will be one, and therefore
if {wi} is an orthonormal system of eigenvectors for QQT , then ǫiwi = Avi with ǫi = ±1.
The latter can be written as WE = AV , namely A = WEV T . Since Qπ = AP and A is
orthogonal matrix, we have

< pk − p̄,vi >=< A(pk − p̄), Avi >= ǫi < qπ(k) − q̄,wi >,

and the proof is completed. �

Note that if < pk − p̄,vi >= 0, for every k = 1, . . . , N , ǫi cannot be determined from
(3.4). If this happens, then P Tvi = 0, and therefore PP Tvi = 0. This means that vi is
the eigenvector that corresponds to the eigenvalue 0, namely i = 1 and λ1 = 0. Thus, if
0 < λ1 < . . . < λd, which happens if rank(P ) = d, then there is at least one k which may
depend on i, such that < pk − p̄,vi > 6= 0, and we have

ǫi =
< pk − p̄,vi >

< qπ(k) − q̄,wi >
.

In this case the matrix E = diag(ǫ1, . . . , ǫd), and A = WEV T is completely determined if π
is known.

Since the point collections are not labeled, we do not know π and could not use the
above formula unless we go through all possible N ! choices for π. But that would be just
an application of the well known PCA for each of the N ! choices of π, which is not compu-
tationally efficient. Our goal is to find E, and therefore A, without an apriori knowledge of
the permutation π, under the assumption that all eigenvalues of PP T are distinct.

Let L−
i (P) := {|〈pk− p̄,vi〉| : 1 ≤ k ≤ N, 〈pk− p̄,vi〉 < 0}, i = 1, . . . , d, be the collection

of the absolute values of all negative scalar products, and L+
i (P) := {〈pk − p̄,vi〉 : 1 ≤

k ≤ N, 〈pk − p̄,vi〉 > 0}, be the collection of all positive scalar products, including their
repetitions. We similarly define L−

i (Q) and L+
i (Q). If rank(P ) = d, at least one of L−

i (P)
or L+

i (P) will have at least one element. The same holds for L−
i (Q) and L+

i (Q). Let P be
equivalent to Q. Then for any fixed i = 1, . . . , d, if L+

i (P) 6= L−
i (P), it follows from (3.4)

that only one of the two cases happens:

• either L+
i (P) = L+

i (Q) and L−
i (P) = L−

i (Q), and thus ǫi = 1, or
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• L+
i (P) = L−

i (Q) and L−
i (P) = L+

i (Q), and thus ǫi = −1.

If there is i0 such that L+
i0
(P) = L−

i0
(P), we cannot make the decision whether L+

i0
(P) =

L+
i0
(Q) or L+

i0
(P) = L−

i0
(Q), and therefore determine whether ǫi0 = 1 or ǫi0 = −1. In this

case, we should consider both cases. In general, we can have m ≤ d indices i, i1, . . . , im, for
which L+

iℓ
(P) = L−

iℓ
(P), ℓ = 1, . . . , m, and we have to consider 2m matrices E, E1, . . . , E2m ,

corresponding to the various cases of ±1 located at the positions described by these m
indices. If Q 6= WEkV

TP , for k = 1, . . . , 2m, then Q is not equivalent to P. Otherwise, if
there is k, such that Q = WEkV

TP , they are equivalent, and A = WEkV
T is the matrix of

equivalence.

Let us denote by L := {P} a library of collections of N points in R
d. Let R be the subset

of L that contains all collections P for which the eigenvalues 0 ≤ λ1 ≤ . . . ≤ λd of PP T are
distinct. Let Q be a configuration of N points in R

d that we need to match to a collection
from the library L. The algorithm, described below, is based on the above observations
and always determines whether Q is equivalent to a collection from R and may or may not
determine whether Q is equivalent to a collection from L \ R.

We have performed several numerical experiments to test our algorithm. In our im-
plementation, as it is usually done in practice, the equality in lines 1, 7, 9, 11 and 23 in
Algorithm 1 has been substituted by ε-distance. For example, Q = WEV TP has been
substituted by ‖Q−WEV TP‖ ≤ ε, with ε ranging from 10−6 to 10−10.

Test 1: For each pair (d,N), d ∈ {2, 3, 4}, N ∈ {2n : 3 ≤ n ≤ 10}, we have generated
in random a library L = L(d,N) of 4000 collections of N points in R

d uniformly distributed
inside the unit sphere. We next build a set T = T (d,N) of point collections by first choosing
(in random) 2000 collections from L, each of which is subsequently shuffled and rotated (in
random). For each collection Q ∈ T , we apply Algorithm 1 with P exhausting all elements
from L until a match is found. The algorithm was able to match each Q from T to its
respective collection in L.

Test 2: For each pair (d,N), d ∈ {2, 3, 4}, N ∈ {2n : 3 ≤ n ≤ 10}, we generate in
random a library L = L(d,N) of 4000 collections of N points in R

d uniformly distributed
inside the unit sphere. We next generate the same way a set T = T (d,N) of 2000 point
collections, and for each collection Q ∈ T apply Algorithm 1 with P exhausting all elements
from L until a match is found. As expected, the algorithm was not able to find a match.

Note that the eigenvalues of the matrix PP T cannot be computed exactly, as they are
roots of a degree d polynomial. However, there are high precision algorithms with complexity
O(d3) to compute the eigenvalue decomposition for Gramians [6]. The proposed algorithm
requires the computation of PP T , (complexity O(d2N)), its eigenvalue decomposition (com-
plexity O(d3)), the computation of d sequences (< p1 − p̄,vi >, . . . , < pN − p̄,vi >) and
(< q1 − q̄,wi >, . . . , < qN − q̄,wi >) (complexity O(dN2)), the computation of at most
2m matrices A, each with complexity of at most O(d3), and the computation of at most 2m

matrices AP , each with complexity O(d2N). Therefore, for large values of N ≈ d2d, our
algorithm has complexity of O(dN2). Note that for every collection P ∈ L the algorithm
needs only the d eigenvalues of PP T , and when they are distinct, the d× N matrix P , the
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Algorithm 1 Decision and Orthogonal Matrix Computation

Input:
P , {λi}, {vi}, {L+

i (P)}, {L−
i (P)}.

Q, {γi}, {wi}, {L+
i (Q)}, {L−

i (Q)}.
% The eigenvalues should be given in increasing order.

Output:
res % Decision value. It may be true, false or inconclusive.

A % Orthogonal transformation, if res is true.

1: if {λi} 6= {γi} then
2: return res← false
3: else if λ1 < · · · < λd then
4: f ← 1, i← 0
5: while i < d and f = 1 do
6: i← i+ 1
7: if {L+

i (P)} = {L−
i (P)} = {L+

i (Q)} = {L−
i (Q)} then

8: ǫi = ±1
9: else if {L+

i (P)} = {L+
i (Q)} and {L−

i (P)} = {L−
i (Q)} then

10: ǫi = +1
11: else if {L+

i (P)} = {L−
i (Q)} and {L−

i (P)} = {L+
i (Q)} then

12: ǫi = −1
13: else
14: f ← 0
15: end if
16: end while
17: if f = 0 then
18: return res← false
19: else
20: W ← [w1, . . . ,wd]
21: V ← [v1, . . . ,vd]
22: E ← diag(ǫ1, . . . , ǫd)
23: if Q = WEV TP then
24: return res← true, A←WEV T

25: else
26: return res← false
27: end if
28: end if
29: else
30: return res← inconclusive
31: end if
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d× d matrix V , and the d sequences (< p1 − p̄,vi >, . . . , < pN − p̄,vi >) which in total is
at most d(1 + d+ 2N) numbers.

4 Robustness

In this section, we investigate the problem of matching two labeled point configurations P
and Q in R

d in the presence of noise. We say that P = {p1, . . . ,pN} and Q = {q1, . . . ,qN}
are ε- identically equivalent, if |‖pi − pj‖2 − ‖qi − qj‖2| ≤ ε for all i, j = 1, . . . , N . The
following statement, whose proof we omit, holds.

Lemma 4.1

(i) If P and Q are ε- identically equivalent, then

| < pi − p̄,pj − p̄ > − < qi − q̄,qj − q̄ > | ≤ 2ε, , ∀ 1 ≤ i, j ≤ N. (4.5)

(ii) If the Gramians for P and Q satisfy

| < pi − p̄,pj − p̄ > − < qi − q̄,qj − q̄ > | ≤ ε, ∀ 1 ≤ i, j ≤ N, (4.6)

then P and Q are 4ǫ-identically equivalent.

Lemma 4.1 shows that if P and Q are Cε- identically equivalent with C being a fixed
constant, then their Gramians are close, namely P TP = QTQ + εM , where the entries mij

of M are bounded, |mij | ≤ c0, by some positive constant c0, and vice versa.

Next, we investigate whether an equivalent of Lemma 2.2 holds in the presence of noise,
that is whether two point configurations P and Q are Cε-equivalent if and only if there is
an orthogonal matrix A for which AP is close to Q. The answer to this question is given in
Theorem 4.2 and Theorem 4.3.

Theorem 4.2 Let P = {p1, . . . ,pN} and Q = {q1, . . . ,qN} be two collections of N points

in R
d, such that rank(P ) = d, ‖pi − p̄‖ ≤ c and ‖qi − q̄‖ ≤ c, i = 1, . . . , N , c = const. Let

P TP = QTQ+ εM, (4.7)

where M = (mij) is a matrix with bounded entries, |mij | ≤ c0, c0 = const, and

0 < ε ≤ (1− δ)
(
‖(PP T )−1‖Nc0

)−1
, (4.8)

for some 0 < δ < 1. Then, there exists an orthogonal matrix A = A(ε), such that ‖AP−Q‖ ≤
εc̃N2, with a constant c̃,

c̃ = cc0‖(PP T )−1‖
(
2 + c‖(PP T )−1‖1/2δ−1/2

)
.
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Proof. First, we derive upper bounds for the norms of some matrices that we shall need
later in the proof. Let us observe that

‖P‖2 = λmax(P
TP ) ≤ trace(P TP ) =

N∑

i=1

‖pi − p̄‖2 ≤ c2N,

and similarly, ‖Q‖ ≤ c
√
N , where we have used the fact that the trace of any matrix is equal

to the sum of its eigenvalues. We also derive a bound for the spectral norm of M . For every
x ∈ R

N with ‖x‖ = 1 we have

‖Mx‖2 =
N∑

i=1

(
N∑

j=1

mijxj

)2

≤
N∑

i=1

[(
N∑

j=1

m2
ij

)(
N∑

j=1

x2
j

)]
=

N∑

i=1

N∑

j=1

m2
ij ≤ c20N

2,

and thus ‖M‖ ≤ c0N .

Note, that PP T is invertible since d = rank(P ) = rank(PP T ), and we can consider the
matrices P T (PP T )−1 and (PP T )−1P . We have (PP T )−1P = (P T (PP T )−1)T , and thus
‖(PP T )−1P‖ = ‖P T (PP T )−1‖. Clearly, (P T (PP T )−1)T (P T (PP T )−1) = (PP T )−1, and
therefore we have ‖P T (PP T )−1‖2 = λmax

[
(PP T )−1

]
. This result, combined with the fact

that

‖(PP T )−1‖2 = λmax

[
((PP T )−1)T (PP T )−1

]
= λmax

[
((PP T )−1)2

]

= (λmax

[
(PP T )−1

]
)2,

gives
‖(PP T )−1P‖ = ‖P T (PP T )−1‖ =

√
‖(PP T )−1‖. (4.9)

In what follows, we give an explicit construction of the equivalence matrix A. We multiply
(4.7) on the right by P and on the left by P T to derive

PP TPP T = PQTQP T + εPMP T .

This equation can be written as

I = (PP T )−1PQTQP T (PP T )−1 + ε(PP T )−1PMP T (PP T )−1.

As it was done in Lemma 2.2, we construct the matrix B := QP T (PP T )−1, denote

L := (PP T )−1PMP T (PP T )−1,

and rewrite the last equation as
I = BTB + εL. (4.10)

Using the bounds for the norms of Q and M and (4.9), we obtain

‖B‖ ≤ ‖Q‖ · ‖P T (PP T )−1‖ ≤ c
√
N‖(PP T )−1‖1/2, (4.11)
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and
‖L‖ ≤ ‖P T (PP T )−1‖2 · ‖M‖ ≤ c0N‖(PP T )−1‖. (4.12)

Notice, that B is not an orthogonal matrix, and thus cannot be a candidate for an equivalence
matrix. However, we can modify B in order to obtain an orthogonal matrix. Let 0 ≤ βε

1 ≤
. . . ≤ βε

d be the eigenvalues of BTB and UB be the orthogonal matrix such that

UT
BB

TBUB = diag (βε
1, . . . , β

ε
d) .

If x ∈ R
d, ‖x‖ = 1 is the eigenvector, corresponding to βε

i , then

βε
i = ‖BTBx‖ = ‖x− εLx‖ ≥ ‖x‖ − ‖εLx‖ ≥ ‖x‖ − ε‖L‖ · ‖x‖

= 1− ε‖L‖ ≥ 1− (1− δ)
(
c0N‖(PP T )−1‖

)−1 · c0N‖(PP T )−1‖ = δ,

where we have used (4.12) and the inequality for ε. This fact allows us to construct

Λ = Λ(ε) := diag

(
1√
βε
1

, . . . ,
1√
βε
d

)
,

and consider the matrix
A = A(ε) := BUBΛU

T
B . (4.13)

Clearly, A is orthogonal since

ATA = UBΛU
T
BB

TBUBΛU
T
B = UBΛdiag(β

ε
1, . . . , β

ε
d)ΛU

T
B = I.

Moreover, we will show that ‖AP − Q‖ ≤ εc̃N2 for the constant c̃ defined in the theorem.
We write

AP −Q = (A− B)P + (BP −Q) = BUB(Λ− I)UT
BP + (BP −Q), (4.14)

and compute the difference BP − Q. Multiplication of (4.7) on the right by P T leads
to P TPP T = QTQP T + εMP T , which gives P T = QTB + εMP T (PP T )−1, and we have
P = BTQ + ε(PP T )−1PMT . We multiply the last equation on the left by B to derive
BP = BBTQ+ εB(PP T )−1PMT , and therefore

BP −Q = (BBT − I)Q+ εB(PP T )−1PMT = ε(B(PP T )−1PMT − LQ), (4.15)

where in the last equality we have used (4.10). It follows from (4.14) and (4.15) that

‖AP −Q‖ ≤ ‖BUB(Λ− I)UT
BP‖+ ε‖B(PP T )−1PMT − LQ‖. (4.16)

We next estimate each of the norms on the right hand side. Using the lower bound for βε
i

and (4.12), we have

‖Λ− I‖ = max
i=1,...,d

∣∣∣∣∣
1√
βε
i

− 1

∣∣∣∣∣ = max
i=1,...,d

|1−
√

βε
i |√

βε
i

≤ 1√
δ

max
i=1,...,d

|1−
√
βε
i |

=
1√
δ
· max
i=1,...,d

|1− βε
i |

1 +
√
βε
i

≤ 1√
δ
· max
i=1,...,d

|1− βε
i | ≤

1√
δ
‖I − BTB‖

=
ε‖L‖√

δ
≤ εc0N‖(PP T )−1‖√

δ
.
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The last inequality, the bounds for the norms of B and P and the fact that ‖UB‖ = ‖UT
B‖ = 1

give

‖BUB(Λ− I)UT
BP‖ ≤ ‖B‖‖Λ− I‖‖P‖ (4.17)

≤ c
√
N‖(PP T )−1‖1/2c

√
N

1√
δ
εc0N‖(PP T )−1‖

=
ε√
δ
c0c

2N2‖(PP T )−1‖3/2

The second norm in (4.16) is evaluated, using (4.9), (4.11), (4.12) and the bounds for the
norms of M and Q, as follows:

‖B(PP T )−1PMT − LQ‖ ≤ ‖B(PP T )−1PMT‖+ ‖LQ‖ (4.18)

≤ ‖B||‖(PP T )−1P‖‖MT‖+ ‖L‖‖Q‖
≤ 2cc0N

√
N‖(PP T )−1‖ ≤ 2cc0N

2‖(PP T )−1‖.

Substitution of (4.17) and (4.18) in (4.16) results in

‖AP −Q‖ ≤ εcc0‖(PP T )−1‖
(
cδ−1/2‖(PP T )−1‖1/2 + 2

)
N2,

and the proof is completed. �

Unfortunately, the converse of this theorem is in general false, and the following theorem
holds.

Theorem 4.3 For any positive constants c, c0, c̃, and for any 0 < ε ≤ 1
2
c2c−1

0 , we can find

d, N , two collections of N points P = {p1, . . . ,pN} and Q = {q1, . . . ,qN} in R
d and an

orthogonal matrix A, such that rank(P ) = d, ‖pi − p̄‖ ≤ c and ‖qi − q̄‖ ≤ c, i = 1, . . . , N ,

‖AP −Q‖ ≤ εc̃N2, but P TP = QTQ + εM , where M is a matrix for which for at least one

entry |mij | ≥ c0.

Proof. Consider any constants c, c0, c̃, d a positive integer, and N = 2d. Let {e1, . . . , ed}
be the canonical basis for Rd, and let P = {p1, . . . ,pN} be the collections of points, where
p2i−1 = c√

2
ei and p2i = − c√

2
ei for i = 1, . . . , d, and Q = {q1, . . . ,qN} be such that q1 =

q2 = 0 and qj = pj , j = 2, . . . , N . A simple computation verifies that p̄ = q̄ = 0, and
therefore, ‖pi − p̄‖ = ‖pi‖ = c/

√
2 < c. Similarly, ‖qi − q̄‖ = ‖qi‖ < c. If A = I, then

AP −Q = P −Q,

(P −Q)T (P −Q) =
c2

2




1 −1 0 · · · 0
−1 1 0 · · · 0
0 0 0 · · · 0

...
. . .

...
0 0 0 · · · 0




,
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N d = 2 d = 3 d = 4
8 0.9468 0.7066 0.5333
16 0.8403 0.6470 0.4670
32 0.6114 0.5323 0.3984
64 0.4622 0.4595 0.3724
128 0.3829 0.3626 0.2839
256 0.2709 0.2327 0.2128
512 0.2002 0.1760 0.1566
1024 0.1415 0.1295 0.1182

Table 1: Simulation results.

and therefore λmax

(
(P −Q)T (P −Q)

)
= c2, which gives that ‖P − Q‖ = c. We compute

directly that

P TP −QTQ =
c2

2




1 −1 0 · · · 0
−1 1 0 · · · 0
0 0 0 · · · 0

...
. . .

...
0 0 0 · · · 0




= εM.

For any ε ≤ 1
2
c2c−1

0 , we have that |m11| = c2

2ε
≥ c0, but if 2d = N is large enough, namely

2d = N ≥
√

c

εc̃
,

we have that εc̃N2 ≥ c = ‖AP −Q‖, and the proof is completed. �

Finally, we verify the theoretical results from Theorem 4.2 by performing a series of
numerical experiments. For each pair (d,N), d ∈ {2, 3, 4}, N ∈ {2n : 3 ≤ n ≤ 10},
we choose in random 1000 collections P of N uniformly distributed points inside the unit
sphere and 1000 collections P of N uniformly distributed points on the unit sphere. We

select δ = 0.9, c0 = 1, ε = 1
2
(1 − δ)

(
‖(PP T )−1‖Nc0

)−1
= 0.05

(
‖(PP T )−1‖N

)−1
. The

matrix Q is then generated so that (4.7) holds, A is computed according to (4.13), and
c := max

i=1,...,N
{‖pi − p̄‖, ‖qi − q̄‖}. For each pair (d,N) the biggest ratio ‖AP − Q‖/(εc̃N2)

(among the 2000 choices) is recorded in Table 1. It is clearly seen that the empirical results
confirm our theoretical bound.
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