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             Chapter 0   Algebra Preliminaries
Calculus is the reformulation of elementary mathematics through the use of a limit process. Students who have weak elementary mathematic skills may have a difficult time learning calculus. In this chapter, we first provide a pretest. If the result of your pretest is above 70% of the total score, your elementary mathematics may be sufficient. Then we will review some basic algebraic formulas and skills which are absolutely necessary for students to know before proceeding to calculus courses. After the review, we will provide a posttest to see how much you have improved your algebraic skills. Finally, we will study the results of the posttest.
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Pretest__The following problems will be demonstrated in the review. 
1. Simplify and eliminate the radical by writing the given expression with fractional exponents: 
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2. Simplify: 
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3. Factor: 
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4. Multiply: 
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5. Simplify: 
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6. Solve for x: 
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7. Rationalize the numerator: 
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8. For 
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, find and simplify: 
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9. Find all values of x that satisfy 
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10. Rewrite
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 as a piecewise-defined function. 

Algebra Review

0.1 Properties of Exponents
An expression of the form 
[image: image14.wmf]n

a

 is called an exponential expression, where the variable a is called the base, and n is called the exponent or power to which the base is raised. Any exponential expression with a rational exponent can be written as a radical expression. The following table provides the properties of exponents that are frequently used in simplifying certain expressions.
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Table 0.1   Properties of Exponents 
[image: image15.wmf]
	Let a and b be positive numbers and let m and n be real numbers. Then,

	1.  
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Example 0.1 Use the properties of exponents to simplify the following expressions. Write the 

answers so that radical notions are not used and there are no variables in the denominator.  

(a) 
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Solution  (a)
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(b) We need to eliminate the radicals. 
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Note: 
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(c)  We only need to eliminate the variables from the denominator. 
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(d) We need to eliminate the radical notion and variables from the denominator. 
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Rationalizing the Denominator

There are times when it is convenient to remove a radical from the denominator of fractions. For example, we want to rewrite the fraction 
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in an equivalent form, but without the radical in the denominator. We will multiply 
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The procedure used to remove a radical from the denominator is called rationalizing the denominator. To simplify a fraction which has radicals in the denominator, multiply the numerator and denominator by the conjugate of the denominator. For example, the expressions 
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are conjugates of each other. 
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Example 0.2  (a) Rationalize the denominator and simplify: 
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                              (b) Rationalize the numerator and simplify: 
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Solution  (a) After multiplying the numerator and denominator by the conjugate of 
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(b)  In calculus, it is sometimes necessary to rationalize a numerator. The same techniques as in (a) can be used to rationalize the numerator of a fraction. 
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0.2 Operations on Fractions

Recall that a fraction has a form of  
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 , where a and b can be integers or algebraic expressions. If a and b (b ≠ 0) are integers, 
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 is called a rational number. For example, 
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 are rational numbers.  If a and b are algebraic expressions, 
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are fractional expressions.  The following table provides the operation rules for combining two (or more) fractions into one. 
(
Table 0.2   Operations on Fractions 

	(The denominators in each case are assumed to be nonzero.)

	  1. 
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Example 0.3   Carry out the indicated operations and simplify:              

(a) 
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Solution  (a)  To add or subtract two fractions with different denominators, we need to find the least common denominator (LCD). Since 
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(c)  This type of expression occurs in calculus.  
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An alternate way to solve the problem is by multiplying the given expression by 
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is the LCD for the fractions in the numerator.  
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Which way is better?


(
0.3 Operations on Polynomials
Adding and Subtracting Polynomials 

An expression of the form 
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 is called a Polynomial, where 
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. The degree of a polynomial is the highest power of the variable. Thus, 
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are polynomials of degree 1, 2 and 4, respectively. Polynomials can be added by combining similar (or like) terms. For example, 
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are similar (because they have the same power of x), hence, 
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. But, 
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are not similar (because they have different powers of x), therefore, they cannot be combined. To subtract one polynomial from another, add the opposite of each term of the polynomial you are subtracting. 
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Example 0.4   Take the indicated operations for the following:
(a) 
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Solution 
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Multiplication of Polynomials 

The product of two polynomials is the polynomial obtained by multiplying each term of one polynomial by each term of the other polynomial and then combining like terms. 
(
Example 0.5   Multiply: 
(a) 
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(b) 
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Solution  (a) Multiplication of polynomials can be carried out by the distributive properties. 
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(b) A binomial is a polynomial that has two terms. Here, 
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are two binomials. It is frequently necessary to find the product of two binomials. The product can be found by using a method called FOIL, which is based upon the Distributive Property. The letters of FOIL stand for First, Outer, Inner, and Last.                                                          
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Factoring Polynomials 
A polynomial of degree greater than 0 is said to be prime relative to a given set of numbers if all of its coefficients are from that set of numbers and it can not be written as a product of two polynomials, excluding 1 and itself, have coefficients from that set of numbers. For example, to the set of integer, 
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is not prime, because 
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. A polynomial is said to be factored completely relative to a given set of number if it can be written as a product of prime polynomials relative to that set of numbers.  The set of numbers most frequently used to factoring polynomials is the set of integers. Here, we will review some of the basic factoring techniques for polynomials with integer coefficients.
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Table 0.3   Basic Factoring Techniques 

	Technique
	Example

	Common Factors
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	Trial and Error for the form   
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 This will be explained in example 0.6(c).
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Example 0.6   Factor each expression completely: 
(a) 
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(e) 
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Solution    
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(c) Polynomials of the form 
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Setting corresponding coefficients equal gives
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These equations suggest a way to find k, s, u, and v. Since the coefficient of 
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is 1,
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Now we need to solve 
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 to find out s and v. Since k and u are 1, 
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. Therefore choose the pair of factors that have a sum of -8: -3 and -5. 
This is the final answer: 
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We also can put 
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 as a cross product form:  
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The result of the cross product is not the coefficient of the linear term. Try another pair. 
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The result of this cross product is the coefficient of the linear term. Therefore, 
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(d) For 
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Therefore, the answer is 
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(e) For 
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cannot be factored over the set of integers and it is called irreducible over the integers. 
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The method of trial and error illustrated in the above can be long and tedious, particularly if the coefficients of the polynomial are large and have many prime factors. But for simple cases, it is often possible to arrive at the correct choice very quickly.
0.4 Rational Expressions
As we mentioned in section 0.1, a fractional expression is a quotient of two algebraic expressions. As a special case, if p and q are polynomials, the algebraic expression 
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is called a rational expression. The operations on fractions we reviewed in section 0.2 are also used for rational expressions. In algebra, as in arithmetic, we say that a fraction is reduced or simplified to lowest terms when the numerator and denominator contain no common factors (other than 1 and -1).  The factoring techniques we reviewed in the previous section are used to simplify rational expressions. 

(
Example 0.7   Reduce the following expressions to lowest terms: 
(a)  
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Solution      

(a)                                
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Example 0.8   For what values is the following rational expression undefined? 
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Solution  Rational expressions name a real number for each real number replacement of the variable or variables. Thus all properties of real numbers apply to rational expressions. Since a real number divided by zero is undefined, the values that make a rational expression undefined are the values that make the denominator of the expression zero. In this case,
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Thus when x equals -1 or 2, the rational expression is undefined. 
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0.5 Difference Quotient
Recall that a function is a rule that takes certain number as inputs and assigns to each input one and only one number as output. For example, the function 
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Example 0.9   Given that 
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Solution   (a) The number 5 is the input for the given function, we need find the output 
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(b) The 2b is the input, we need find the output 
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(c) The 
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Note: 
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In this case, 
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A special fractional expression of a function, called the difference quotient, plays an important role in calculus. For now, we will concentrate on the algebraic techniques used in calculating and simplifying such expressions. You will learn the meaning and applications later when you learn calculus.  

(
Table 0.4  Definition of The Difference Quotient  
	If f is any function and h is any nonzero number, then the difference quotient of f is the expression 
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Example 0.10   Given that 
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Solution   From the example 0.9 (c), we have already found
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Example 0.11   Compute the difference quotient of 
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 when x = 1. Rationalize the numerator if needed. 
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Solution   By the definition, the difference quotient when x = 1 is the expression 
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Example 0.12   Compute the difference quotient of 
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Solution   By the definition, the difference quotient when t = 2 is the expression 
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The right hand side is the expression in Example 0.3 (c) that we have already simplified. 
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0.6 Solving Linear Equations

A linear equation in one variable is an equation that can be written in the form 
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, where a and b are real numbers and 
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. A solution (root) set of an equation is the set of real numbers which make the equation true. To solve an equation is to find all its solutions. 
Two equations are equivalent if they have the same solution set. To solve equations, we use the idea that adding or subtracting the same quantity on both sides of the equation and multiplying or dividing both sides of an equation by the same nonzero quantity produces an equivalent equation to generate a sequence of equivalent equations until we obtain one whose solution is obvious.  
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Example 0.13   Solving linear equations: 
(a)  
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Thus the solution is 4. You can check this answer by substituting 4 for x in 
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Thus, the answer is right. 
(b) 
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Thus the solution is 15. You can check this answer by substitute 15 for x in 
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The answer is right.     
(c) When we multiply both sides of an equation by an expression containing a variable, we sometimes produce an equation that is not equivalent to the original equation. In this case, to eliminate the denominator, we need multiply both sides by 
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Since the denominator is 0 when 
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, the number -3 does not satisfy the original equation. Therefore, we say the equation has no solution.  It is necessary and important to check the answers, particularly when you multiply an equation by an expression containing a variable.  
An alternate way to solve above equation is by cross-multiplication. The idea is if 
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Which way is better?
                                                                                                                                                                      ( 

0.7 Solving Quadratic Equations

Solving Quadratic Equations by Factoring 

A quadratic equation is an equation that can be written in the form 
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, where a, b, and c are real numbers and 
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. One of the simplest techniques for solving quadratic equation involves factoring and applying the following theorem. 
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Table 0.4   The Zero-Factor Theorem 

	If A and B are real numbers, then
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Example 0.14   Solve each equation by factoring.  

(a) 
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Solution   (a)  
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The solutions are 
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 and -2. You can check the answers by substituting 
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 and -2 for x in the equation respectively. 
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(b) 

The answers are 0, -2 and 4, which means the equation has three solutions.  But if you divide both sides by x at the beginning, you would have found only two solutions: -2 and 4. 
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Solving Quadratic Equations by Completing the Square

The previous method requires the quadratic equation to be factored into integers. However, not every quadratic equation, like
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, can be factored into integers. A technique called completing the square can solve the problem. The idea of completing the square is using the algebraic skills to rewrite the form 
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, which can be easily solved by taking the square root of each side.      
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Example 0.15   Solve each equation by completing the square. 

(a) 
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Solution   
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Therefore the equation has two solutions: 
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There are two solutions: 
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, which are called complex numbers. A complex number is a number of the form 
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, where a and b are real numbers. a is called the real part of the complex number and b is called the imaginary part of the complex number. To make it possible to solve all quadratic equations, mathematicians invented this complex number system. Example 0.15(b) has no solutions in the real number system, but have two solutions in the complex number system. 

Solving Quadratic Equations by Using the Quadratic Formula

A general formula known as the quadratic formula can be derived by applying the method of completing the square to the standard form of a quadratic equation. This formula can be used to solve any quadratic equation. 
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Table 0.4   The Quadratic Formula 

	The solution of the general quadratic equation 
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Example 0.16   Solve each equation by using the quadratic formula.. 
(a) 
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Solution   (a) The equation
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The solution is a real number 
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and it is called a double root.
(b) The equation
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is not in the standard form 
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, we need to rewrite it in standard form before using the formula. 
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The solutions are two real numbers: 
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(c) The equation 
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, we need to rewrite it in standard form before using the formula. 
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The solutions are two complex numbers: 
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The expression 
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 in the quadratic formula is called the discriminant. Its value determines the nature of the roots of the given quadratic equation, as summarized in the following table. 
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Table 0.5   The Discriminant 
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	For any quadratic equation 
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, where a, b, and c are real numbers and 
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	The equation has two real and unequal roots.

	2. 
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	The equation has one real root (double root).

	3. 
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	The equation has two complex number (no real) roots. 


0.8 Inequalities 
An inequality is a statement where two expressions are not equal. For example, 7 > 4 is an inequality which means 7 is greater than 4. The symbols > (greater than), < (less than), ≥ (greater than or equal), and ≤ (less than or equal), are used to write inequalities.  
A linear inequality in one variable is an inequality that can be written in the form 
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, where a, b, and c are real numbers, and 
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. The solution set of an inequality is the set of real numbers which make the inequality true. Most of properties we used for solving equations are also true for solving inequalities except for those involving multiplying and dividing each side of an inequality by a negative number. The basic properties are summarized in the following table.  
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Table 0.6   Properties of Inequalities
	Let a , b and c be real numbers. 

	1. If  
[image: image265.wmf]ab

<

 , then 
   
[image: image266.wmf]acbc

+<+

  and   
[image: image267.wmf]acbc

-<-

. 
	Example: 
      If 
[image: image268.wmf]510

<

, then 
[image: image269.wmf]53103

+<+

, or 
[image: image270.wmf]813

<

.
      If 
[image: image271.wmf]510

<

, then 
[image: image272.wmf]52102

-<-

, or 
[image: image273.wmf]38

<

. 

	2. If  
[image: image274.wmf]ab

<

 and c is positive, then 
   
[image: image275.wmf]acbc

×<×

.

   If  
[image: image276.wmf]ab

<

 and c is negative, then

   
[image: image277.wmf]acbc

×>×

. 
	Example: 

       If 
[image: image278.wmf]510

<

, then 
[image: image279.wmf]52102

×<×

, or 
[image: image280.wmf]1020

<

.

       If 
[image: image281.wmf]510

<

, then 
[image: image282.wmf]5(2)10(2)

×->×-

, or 
[image: image283.wmf]1020

->-

.

	3. If a < b and b < c , then
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	Above properties hold for other inequality relations: >, 
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Example 0.15   Solve each inequality: 

(a) 
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Solution  (a)  
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The solution is a number set which includes all real numbers less than -3. The solution set can be denoted as x < -3 or the unbounded interval (-∞, -3). 
(b) 
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The solution is a number set which includes all real numbers greater than or equal to -4. The solution set can be denoted as x ≥ -4 or the unbounded interval [-4, ∞). 
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(c)                     

The solution is a number set which includes all real numbers greater than 4 and less than or equals to 5. The solution set can be denoted as 
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 or the interval (4, 5]. 

0.9 Absolute Value 
Recall that the absolute value of a number x, denoted by |x|, is the distance from x to 0 on the real number line. Distance is always positive or zero, so we have |x| ≥ 0 for every number x.    
(
Table 0.6   Definition of Absolute Value
	If x is a real number, then the absolute value of x is 

                                       
[image: image294.wmf]if  0

if  0

xx

x

xx

³

ì

=

í

-<

î




Solving Absolute Value Equations and Inequalities 

To solve absolute value equations and inequalities, we use the following properties. 

(
Table 0.7   Properties of Absolute Value Equations and Inequalities 

	 If a > 0, then  

	1. 
[image: image295.wmf]xa
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, is equivalent to 
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	2. 
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	3. 
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	The properties above also hold for the other inequality relations: 
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 and 
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Example 0.16   Solve: 

(a) 
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(b) 
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(c) 
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Solution  

(a) The equation 
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x
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 is equivalent to two equations: 
[image: image308.wmf]257 

x

-=

and 
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, which can be solved separately: 

[image: image429.wmf]2

     3520

(31)(2)0

xx

xx

+-=

-×+=


Thus, the solutions are 6 and -1. 

(b) The inequality 
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 is equivalent to the inequalities: 
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. Therefore,
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The solution is the set 
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, or the interval 
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. 

(c) The inequality 
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 is equivalent to the inequalities: 
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, which can be solved separately:    
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The solution are the sets x > 0 and x < -1, or the intervals (-∞, -1) and (0, ∞).                                          (
Absolute Value Functions 
The definition of absolute value shown in Table 0.6 also defines a function which has a rule assigning each real number x its absolute value |x|. The function is called an absolute value function and the graph is shown in the following figure.       
(
Figure 0.1 Graph of the absolute value function:
[image: image317.wmf]()
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Note that the graph of 
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 has a corner at x = 0 (origin) and has two straight lines: 
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 for x ≥ 0 and 
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 for x < 0. This kind of function which is defined for specific intervals is called a piecewise-defined function. 
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Example 0.17   For the following functions, graph the function and rewrite the function in piecewise form.       
(a)  
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(b)  
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Solution   
(a) Since 
[image: image324.wmf]()
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 has a corner when x = 0, to find the corner of 
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, we let 
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is -3, which means the corner of 
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 has shifted 3 units to the left of the origin. See the figure below. 

Also if 
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(b) To find the corner, we let 
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, then the solution 
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 means the corner has shifted 
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If  
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Posttest                
1. Simplify the following expression. The answer should not have radical or negative exponents. 
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2. For 
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, find the difference quotient when x = 2.                         
3. Solve by completing the square: 
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4. Factor:   
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5.  Solve for x: 
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6. Solve for x: 
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7. Rationalize the numerator: 
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 EMBED Equation.DSMT4  [image: image351.wmf]                                  
8. Simplify: 
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9. Find all values of x that satisfy 
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.       

10. Rewrite 
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 as a piecewise-defined function.          
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Analyzing Posttest Result
The knowledge and skills in Algebra are essential for learning Calculus. The Pretest, Chapter 0, and the Posttest are all designed to refresh and review your Algebraic skills. However, they are not supposed to teach these skills to you.

	Posttest score

(after review)
	Analysis

	90% or above
	You are most likely prepared with the essential algebraic skills.

	Between 75% and 90%
	You are some what prepared with the essential Algebraic skills. It would be in your best interest to study on your own to improve your Algebra in order to avoid struggling when learning Calculus.

	75% or below
	You need to seriously reconsider taking this course. Your Algebraic skills do not seem to be adequate to take Calculus. Major difficulty exists. Please consult your advisor. 


The numbers given are only guidelines. Please take all factors into account to make a mature and responsible decision on whether you should take this course or not. 

Answers to Pretest 
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6. x = 0, x = -2, x = 4               7. 
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Answers to Posttest 
1. 
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Set up two equations.








Solve for x.





Given.





Factor.





� EMBED Equation.DSMT4  ��� if and only if  � EMBED Equation.DSMT4  ��� or � EMBED Equation.DSMT4  ���.





Solve for x. 





Rationalize the numerator. 








Simplify.





Plug in� EMBED Equation.DSMT4  ���in both sides.


Apply � EMBED Equation.DSMT4  ���





Distributive property





Plug in 2b in both sides.





Simplify.














Plug in 5 in both sides.. 





� EMBED Equation.DSMT4  ���





Factor out the common factors from


numerator and denominator





Simplify.





Rewrite as the form: � EMBED Equation.DSMT4  ���





Apply: � EMBED Equation.DSMT4  ���





Apply the Distributive Property





� EMBED Equation.DSMT4  ���is a prime polynomial. 








� EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���





or





or





� EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���





This line suggests� EMBED Equation.DSMT4  ���.





This line suggests� EMBED Equation.DSMT4  ���.





The first line suggests � EMBED Equation.DSMT4  ���. 





The second line suggests � EMBED Equation.DSMT4  ���.





Given





Distribute -2 to the second pair of parentheses.





Group the similar terms together 





Simplify





� EMBED Equation.DSMT4  ���





Given





� EMBED Equation.DSMT4  ��� and � EMBED Equation.DSMT4  ��� are similar, � EMBED Equation.DSMT4  ���and � EMBED Equation.DSMT4  ���are similar.





Group the similar terms together.





 Simplify. 





� EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���





Given





Add 7 to each of the three parts of the inequality. 





Simplify.





Multiply each of the three parts of the inequality by � EMBED Equation.DSMT4  ���.








 





� EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���





Given





Subtract 7x from both sides.





Subtract 1 from both sides.





Multiply  both sides by (� EMBED Equation.DSMT4  ���) and reverse the 


Inequality symbol.





Given





Subtract both sides by 1. 





Simplify.





Multiply both sides by (� EMBED Equation.DSMT4  ���) and reverse the inequality symbol. 








� EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���





Given





Subtract each side by 5. 





Divide each side by 9, making the coefficient of � EMBED Equation.DSMT4  ��� equal to 1. 








Half of � EMBED Equation.DSMT4  ���is � EMBED Equation.DSMT4  ���. Add the square of � EMBED Equation.DSMT4  ���to each side.





Using � EMBED Equation.DSMT4  ���, the left hand side is � EMBED Equation.DSMT4  ���. 








Take the square root of each side. 





Simplify the right hand side. Note that � EMBED Equation.DSMT4  ���is not a real number, it is called an imaginary number and denoted as i (� EMBED Equation.DSMT4  ���). 




















� EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���





Given





Add 2 to each side.





Half of the coefficient of x is 1 and � EMBED Equation.DSMT4  ���. Add 1 to each side. 





Using � EMBED Equation.DSMT4  ���, the left side is � EMBED Equation.DSMT4  ���.





Take the square root of each side. 





� EMBED Equation.DSMT4  ���means � EMBED Equation.DSMT4  ��� or  � EMBED Equation.DSMT4  ���. 





Set up two equations and solve for x. 





� EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���





Do not divide both sides by x. 


Subtract � EMBED Equation.DSMT4  ���from each side.





To use the Zero-Factor theorem to 


solve the equation, one side must be 0. 





Factor x 





Factor completely. 





Set each factor to zero, solve for x. 





� EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���





Given.








The LCD is 15. Multiply both sides by 15.








By the distributive property





Simplify.





Add similar terms.





Divide both sides by 11.





Simplify.





� EMBED Equation.DSMT4  ���





Given.





Add 5 to both sides. 





Simplify.





Multiply both sides by � EMBED Equation.DSMT4  ���.





Simplify. 











� EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���





Factor, then simplify. 





        3            -2                       





(+)    2             5                       





      15    +   (- 4)  =  11        





The coefficient of the linear term





The factors of the   constant term: c





The factors of the 


coefficient of � EMBED Equation.DSMT4  ���





             1            -3                        





   (+)     1             -5                         





            (-5 )  +  (- 3)  =  -8        





           1            3





 (+)      1             5       





           5    +     3     =   8        





            k            s


                                                        


(+)         u            v                 


                            


           kv    +    us   =  -8        





� EMBED Equation.DSMT4  ���





Grouping





Factor out the common factors � EMBED Equation.DSMT4  ���and -4





Factor out the common factor � EMBED Equation.DSMT4  ���














Difference of squares





Find the common denominator 


for the fractions in the numerator. 











Simplify.








� EMBED Equation.DSMT4  ���





Factor out the common factors 2 and 3. 








The LCD is � EMBED Equation.DSMT4  ���.








Simplify.





By properties: � EMBED Equation.DSMT4  ���, � EMBED Equation.DSMT4  ���





Apply distributive property for numerator. 








Simplify the numerator. 








Factor out the common factor 13 from numerator








Cancel � EMBED Equation.DSMT4  ���from numerator and denominator. 





First          Outer





Inner       Last





By property: � EMBED Equation.DSMT4  ���





By property: � EMBED Equation.DSMT4  ���





Group





By property: � EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���
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