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The derivative of a function at x is defined as
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, which can be used to find slopes of tangent lines as well as instantaneous rates of change.  Unfortunately, computing the derivative directly from the definition can be quite tedious and overwhelming.  In this chapter, we will present several rules of differentiation that will greatly simplify the differentiation. 
5.1 Basic Differentiation Rules 
Before we start to study the rules of differentiation, we need to introduce alternate ways to represent the derivative.  
(
Table 5.1   Alternative Notations for the Derivative
	[image: image1.wmf]For 
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, all of the following may be used to represent the derivative:
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The process of finding the derivative of a function is called differentiation. A function is differentiable at x if its derivative exists at x. The following table lists the basic differentiation rules.                         
(
Table 5.1   Basic Differentiation Rules
	Let C, a, and n be real numbers with
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.  Let f(x) and g(x) be differentiable functions. 

	Rules
	Examples

	1. Constant rule: If 
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	4. Sum and Difference rule: 

    If 
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Example 5.1 Find the derivatives:   
(a) 
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Solutions  (a)
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(b) If a power function involves negative powers, we must rewrite the function in the form of
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.  Then, we apply the power rule. Recall that 
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(c) If a power function involves radicals, we must rewrite each radical as a fractional power.  Again, we then apply the power rule. Recall that 
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(d) Using rules 5 and 6, we have                                    
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(e) By rules 7 and 8, we have                                      
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Applications
Since the slope of a line tangent to a curve is given by the derivative, differentiation rules can be used to find the equation of the tangent line. The steps for deriving a tangent line from a function f(x) at x = a are summarized in the following table. 

(
Table 5.2   How to Find a Tangent Line

	Assuming that f(x) is differentiable at x = a. 

	Step 1. Find the y coordinate of the point at x = a: 
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  (x and y are both given sometimes.)

	Step 2. Find the slope of the tangent line at x = a: 
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	Step 3. Use the point-slope formula
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to find the equation of the tangent line:
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Example 5.2    Find the equation of the line tangent to the graph of  
[image: image58.wmf]32

()221

fxxx

=-+

 at x = 1. Sketch the graph of f(x) and the tangent line on the same axes. 
(
Solutions When x = 1, we can get the y coordinate by finding f(1):
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. 
By taking the derivative, we can find a formula for the slope of a line tangent to any point of f :
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In particular, the slope of the tangent line of f at x = 1 is 
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By using the point-slope formula of the line equation with slope 2 and the point (1, 1), we have
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The graph of 
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 and the tangent line 
[image: image64.wmf]21

yx

=-

at x = 1 can be seen in Figure 5.1.  
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Figure 5.1 Graph of Example 5.2
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The derivative of a function can also be interpreted as the instantaneous rate of change of f(x).  Hence, we can use the derivative to study rates of change.
(
Example 5.3   The population of a fire ant colony is growing according to the function 
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, where t is time measured in days. What is the rate of change of the population with respect to time when t = 4? Give units and interpret the answer.                    

(
Solutions       The rate of change of the population with respect to time is given by 
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When t = 4, the rate is 
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If 
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also can be written as 
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in what is called Leibniz’s notation. Leibniz’s notation is useful for determining the units of the derivative:
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Since N is measured in number of the fire ants and t is measured in days, 
[image: image73.wmf]'()
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 must be measured in number of fire ants per day. The statement 
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 means that on the fourth day, the colony is increasing in size at the rate of 200 fire ants per day. This is an instantaneous rate of change, meaning that if the rate were remaining 200 fire ants increasing per day for a whole day on forth day, there would be extra 200 fire ants on the fifth day. 
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(
Example 5.4   Derek purchased a new car for $20,000 dollars and its value after t years is estimated by 
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.  How much was the car decreasing in value per year when it was driven out of the show room?

(
Solutions       This is asking for the rate of change of the car’s value at t = 0, or 
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The statement 
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means that the value of the car decreased at a rate of $2,107.2 per year when the car was driven out of the show room.  
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5.2 The Product and Quotient Rule

If f(x) and g(x) are both differentiable, then the derivative of 
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can be found by the product rule. 
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Table 5.2    The Product Rule

	If
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Example 5.5   Find the derivative of the following functions. 
(a) 
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(b) 
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Solutions      (a) 
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Note: In general, the derivative of the product of two functions is not given by the product of the derivatives of the functions: 
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In this case, 
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can be thought as 
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If f(x) and g(x) are both differentiable, then the derivative of 
[image: image99.wmf]()

()

fx

gx

can be found by the quotient rule.  Note that we must avoid points where g(x) = 0.
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Table 5.2    The Quotient Rule

	If 
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which is valid for any x at which
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The denominator of the Quotient Rule is easy to memorize, but the numerator is not.  To remember this expression, simply memorize the expression in this form: 
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Example 5.6   Find the derivative of the following functions. 

(a) 
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Solutions    (a)
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Note: In general, the derivative of the quotient of two functions is not given by the quotient of the derivatives of the functions: 
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In this case, 
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(b) In this quotient, 
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Applications                                                                          
In economics, the word “marginal” refers to an instantaneous rate of change.  In other words, marginal refers to the derivative. For example, if C(x) is the cost function, 
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Cx

 is called the marginal cost function. The marginal cost reflects how the cost changes in response to a one unit change in the production. Knowing this cost is very important to management in their decision making processes. Similarly, if 
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 are revenue and profit functions, 
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are called the marginal revenue and marginal profit functions. 
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Example 5.7    The cost to produce q items is 
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dollars. Find the marginal cost of producing the 25th item. Interpret the answer in terms of costs. 
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Solutions      The marginal cost is defined as
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Then, the marginal cost function is 
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Hence, the marginal cost of producing the 25th item is 

                                      
[image: image129.wmf]3

2

1

2

3

5

'(25)(25)425

2

5

          (25)100212.5  dollars/item

2

C

=×-×

=×-=

             
The statement 
[image: image130.wmf]'(25)212.5 dollors per item
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says that when 25 items have already made, the cost of making the next item is approximately $212.5. Another way of saying this is that it costs about $212.5 to make the 26th item. 
We can also find 
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by first using the distributive property before differentiation:    
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Then,                              
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(
Example 5.8   The sales (in millions of dollars) of a DVD player t years after it is put on the market is given by
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How fast are the sales changing at the end of the first year? At the end of the second year? 
(
Solutions    The problems are asking for the rate at which sales are changing at the end of the first year and at the end of second year. The rate at which sales are changing at time t is given by
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Therefore 
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Thus, sales are increasing at a rate of $7.233 million per year at the end of the first year, and sales are decreasing at a rate of $9.078 million per year at the end of the second year. 
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5.3 The Chain Rule

The derivative rules we discussed in the preceding sections can let us differentiate functions like 
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 are called composite functions.  Before we study a new rule that will let us find the derivative of a composite function, we review the composite function first. 
The composite functions 
Recall that two function can be combined in various ways (sum, difference, product and quotient) to create new functions. The composition is a special way to form a new function.

(
Table 5.3    Definition of Composite function

	Given two function f and g, the composite function 
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Example 5.9   If  
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Solutions  To get 
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To get 
[image: image154.wmf]()()(())

gfxgfx

=

o

, replace x from 
[image: image155.wmf]32

()345

gxxx

=-+

 by 
[image: image156.wmf]100

()

fxx

=

:
                       
[image: image157.wmf]10010031002300200

()()(())()3()4()5345

gfxgfxgxxxxx

===-+=-+

o


To get 
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For a composite function
[image: image164.wmf](())

yfgx

=

, we might think of f(x) as the “outer” function that acts on the values of the “inner” function g(x). This point of view will help us to recognize a composite function.
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Example 5.10   Find the inner and outer functions for the following functions so that each one can be represented as a composite function. This process is called the Decomposition. 
(a)  
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Solutions    Decomposition of Composite Functions   
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	Inner Function: g(x)
	Outer Function: f(x)
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The Chain Rule
In the above example, we observe that the outer and inner functions are much simpler functions that can be differentiated by the derivative rules from the previous sections. The following rule describes the relationship between the derivative of a composite function
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 and derivatives of its inner and outer functions.
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Table 5.3    The Chain Rule

	If 
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	The alternative form of  the Chain Rule:

Let 
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When applying the Chain Rule, it is helpful to think of the composite function 
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 as having two parts: an inner part and an outer part. Then, the derivative of 
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is the product of the derivative of the outer function (at the inner function u = g(x) ) and the derivative of the inner function at x.    
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Example 5.11  Find the derivative of 
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Solution   For this function, you can consider the inner function to be
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By the Chain Rule, we have 
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By the alternative form of the Chain Rule, we have 
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The above example is one of the most common composite functions,
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, where the outer function is a power function,
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. The rule for differentiating such function is called the General Power Rule and it can be considered a special case of the Chain Rule. 
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Table 5.4    The General Power Rule

	If 
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Example 5.12  Find the derivatives:

(a) 
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Solution   (a) In this function, the outer function is 
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(b)  
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We could also use the Quotient Rule to differentiate this function, 
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but it is much easier to use the Chain Rule. In general, do not use the Quotient Rule for functions of the form 
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(c)  For this function, we need to apply the Product Rule before applying the Chain Rule. 
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Recall that the derivative of 
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is simply
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.  Can we apply the Chain Rule to functions of the form
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?  Using the Chain Rule, we find the following formulas: 
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Table 5.5    The Chain For Exponential functions                        
	If 
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Note that the derivative of 
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Example 5.13      Find the derivatives:
(a) 
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Solution   (a) In this function,
[image: image237.wmf]()32

gxx

=-

 and 
[image: image238.wmf]'()3

gx

=

. By the Chain Rule, we have

[image: image405.wmf]'(),  ',  ,  [()]

dyd

fxyfx

dxdx

                                                
[image: image239.wmf]()

3232

'()'()

        33

gx

xx

kxegx

ee

--

=×

=×=


(b) Let 
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(c) Rewrite the function as
[image: image243.wmf]1

2

2

2

(1)

x

x

y

e

+

=

.                                            
[image: image406.wmf]'

f

                   
[image: image244.wmf]22

11

22

2

22

11

22

2

2

1

2

22

2

2

1

2

22

2

22

2

22

22

2

2

(1)(1)

'

()

1

(1)2(1)2

2

    

()

(1)12(1)

    

(122)(21)

    

(1)

1

xx

x

xx

x

x

xx

x

x

dd

exxe

dxdx

y

e

exxxex

e

exxx

ee

xxxx

xe

ex

-

-

×+-+×

=

×+×-+××

=

éù

××+-+

ëû

=

×

---+

==

+

+

        
This function can also be differentiated by the Product Rule.                                                                                                    
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The Product Rule is easier to remember.  Hence, whenever a function can be written as a product it is more convenient to use the Product Rule than the Quotient Rule.
                                                                                                                                                                     (                                                                                   
Recall that the derivative of 
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Table 5.6    The Chain Rule for Logarithmic Functions
	If 
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Note that the derivative of 
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Example 5.14      Determine the derivative for the following functions.  
(a) 
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Solution   (a) In this function, 
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(b) Here, we need to use The Chain Rule twice. Let 
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Now, applying the Chain Rule again, we have
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We can also find 
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by first rewriting the function using the logarithmic property, and then taking the derivative: 
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(c)  if 
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Another way of finding
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is by rewriting the function using the logarithmic property, and then taking the derivative: 
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To get the same answer, we need to combine the result as follows:  
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Example 5.15    Suppose that the demand equation of a product is given by
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, where x is measured in thousands. Find the marginal revenue function and find where the marginal revenue is zero. 
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Solution   Recall that the revenue function is defined as 
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To find where the marginal revenue is zero, let 
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Recall that 
[image: image285.wmf]x
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is never zero no matter what the value of x is. Thus, the marginal revenue will be zero only if x = 3 or x = -3. For this case, x = -3 doesn’t make sense. Therefore, the marginal revenue will be zero if three thousand products are made.                                                                                                        (
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Example 5.16    Find where the tangent line to the graph 
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 is horizontal. 
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Solution   The tangent line will be horizontal when the slope is zero, that is, at points where the derivative is zero. Applying the Chain Rule, we have
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Since the only time that a fraction can equal zero is when the numerator equals zero, 
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.  By solving this equation, we find that the graph has two horizontal tangent lines at x = 0 and x = ¾. 
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5.4 Higher-Order Derivatives 

The derivative
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of a function f is also a function; hence, where it exists, we can also find the derivative of 
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. We call 
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 the first order derivative of  f , and the derivative of 
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, denoted as 
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, as the second order derivative of f. Continuing in this manner, we are led to consider the third, fourth, and higher order derivatives of f  whenever they exist. The following table represents the notations for the higher order derivatives. 
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Table 5.7    Notations for the Higher-Order Derivatives
	Name
	Notation

	The First-Order Derivative                        
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Example 5.17    Find all derivatives of all orders of the function 
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Solution   We have
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In fact 
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Example 5.18    Find the fourth derivative of the function 
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Solution   We have
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Application 
What exactly does the second derivative
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tell us? Just as the first derivative
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measures the instantaneous rate of change of the function f , the second derivative of f measures the rate of change of the first derivative
[image: image311.wmf]'

f

of the function f; in other words, the rate of change of the rate of change of f.
Acceleration

In physics, the second derivative 
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 can be interpreted as acceleration. Recall that if 
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is the position function of an object that moves in a straight line, then the instantaneous rate of change of the position of the object is called the velocity of the object at time t:

                                                       
[image: image314.wmf]()'()

ds

vtst

dt

==


The instantaneous rate of change of velocity with respect to time is called the acceleration a(t) of the object. Thus, the acceleration function is the derivative of the velocity function, and hence, is the second derivative of the position function: 
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Example 5.19    The vertical position of a ball thrown from the top of a lighthouse is given by 
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where s is measured in feet and t is measured in seconds. Find the velocity and acceleration of the ball 5 seconds after it is thrown. 

(
Solution   The velocity v and acceleration a of the ball at any time t are given by 
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and                               
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Therefore, the velocity and the acceleration of the ball 5 seconds after it is thrown is 
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This means that after 5 seconds the ball is falling at a speed of 64 ft/sec and the acceleration of the ball is a constant 
[image: image321.wmf]2

32 ft/sec
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.  The negative sign indicates that the acceleration is also directed downward.  We should not be surprised by the constant acceleration since we know there is only one force acting on such a following object, gravity, which is constant. 
                                                                                                                                                                   (                            
Concavity 

The second derivative 
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 can be used to study the shape of the graph of a function. For example both 
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and 
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 are increasing in the interval (0, ∞), but there is a fundamental difference in the way they are increasing.  The slopes of the lines tangent to the graph of
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are increasing as we move from left to right.  Meanwhile, the slopes of lines tangent to the graph 
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are decreasing as we move from left to right. See the following graphs. 
(
Figure 5.2 Graphs of
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The word concavity is used to describe the shape of a function. From the above graphs, we have the following definition of concavity. 
(
Table 5.8    Definition of Concavity

	We say that the graph of f  is concave up on the interval (a, b), if 
[image: image331.wmf]'

f

is increasing on (a, b). 

	We say that the graph of f  is concave down on the interval (a, b), if
[image: image332.wmf]'

f

is decreasing on (a, b).

	A point where the graph of f changes concavity is called a point of inflection. 


Recall that 
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 tells us where f  is increasing and where it is decreasing.  The derivative of 
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 , which is 
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, tells us where 
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 is increasing and where it is decreasing. We can use the following second derivative test for concavity. 
(
Table 5.9    Test for Concavity 

	If 
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on the interval (a, b) (
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is increasing) , then f is concave up on (a, b).   

	If 
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<

on the interval (a, b) (
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is decreasing) , then f is concave down on (a, b).   


Concavity is very important for sketching the graph of a function, which we discussed it in Chapter 6. Here we will concentrate on its application to economics problems. 
(
Example 5.20     The total sales (in thousands) of a new video game is given by 
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where t is the time in months.  Where is the graph of 
[image: image342.wmf]()
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 concave up and where is it concave down? Are there any inflection points of 
[image: image343.wmf]()

st

? Explain what this means.
(
Solution   The given expression s(t) is called the logistic function. A logistic function is always increasing. Its graph is concave up at first, then concave down, and finally levels off at a horizontal asymptote.  (See Figure 5.3). In this case, the point of inflection (also called the point of diminishing), where the concavity changes, is somewhere around 10 weeks. To find out exactly where the curve change the concavity, we need the second derivative of s(t).  
(
Figure 5.3 Graph of the logistic function 
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When the curve is concave up, we know
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(
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is increasing), and when the curve is concave down, 
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(
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is decreasing).  Therefore, the curve changes concavity when 
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or when
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 does not exist. Since 
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We can use the chain rule or quotient rule to find the first derivative of s(t):               
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Using the quotient rule and the chain rule, we have
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The denominator in 
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 is never zero, so there is no point at which
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is undefined. To find where the 
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, we only need to set the numerator equals to zero: 
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The factor  
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 can never be equal to zero, so we have 
[image: image359.wmf].4

(641)0

t

e

-

-=

.  Now, solve for t: 
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Thus, the curve of the sales function changes the concavity around 10.4 months. This means when the new game just appears on the market, the sales increase rapidly, more units are sold each month than the previous month until the middle of the 11th month. Then the sales slow down and fewer units are sold each month than the previous month.  The inflection point is the time when the rate of sales stops increasing. Eventually, most people who want the new game have already bought it, the sales will stop and the 59 million units should be the maximum potential sales of the new game. 

                                                                                                                                                                      (      
Sample Quiz 
Find derivatives for problems 1- 5: 

1. 
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6. Find the equation of the tangent line to the graph of 
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at the point at which x = 0. 

7. The cost function for a product is given by 
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, where x is the number of items produced and C(x) is the cost in dollars to produce x items. How much would it cost to produce the 101st item? 
8. A drug concentration curve is given by 
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, with C in mg/ml and t in minutes. What is the rate of the concentration 4 minutes after it was administered?                              

9. Suppose the demand equation for a product is given by 
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, where x is the number of items sold and p is the price in dollars. Find the marginal revenue function.  

10. The deer population in a wild park is approximated by 
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 with t measured in years since 1980.  When does the deer population stop growing?
Answers to Sample Quiz 
1. 
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10.  After t = 7.324 years or in 1987                                                                                                    


































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Recall that:  � EMBED Equation.DSMT4  ���





Apply the Chain Rule for each term. 





Recall that:  � EMBED Equation.DSMT4  ���





Apply the Chain Rule for � EMBED Equation.DSMT4  ���





The General Power Rule








Factor out the common factor








Simplify 





Distributive Property








Simplify. 





Factor out the common factor � EMBED Equation.DSMT4  ��� from the numerator. 





Simplify. 





Apply the Quotient Rule.














Apply the Chain Rule to each term. 








Factor out the common factor: � EMBED Equation.DSMT4  ���








Simplify. 





Apply the Product Rule.





Apply the General Power Rule for derivatives.





Simplify. 





Factor the common factor: � EMBED Equation.DSMT4  ���  





Apply the Distributive property.





Simplify. 





Rewrite








General Power Rule





Rewrite the outer function as � EMBED Equation.DSMT4  ���





General Power Rule














Simply








Rewrite � EMBED Equation.DSMT4  ��� as � EMBED Equation.DSMT4  ���





 n     � EMBED Equation.DSMT4  ���       � EMBED Equation.DSMT4  ���





Replacing u by� EMBED Equation.DSMT4  ���.





These steps can be performed mentally.





The derivative of the outer function� EMBED Equation.DSMT4  ���, where � EMBED Equation.DSMT4  ���





Derivative of the inner function at x





Derivative of the outer function at u = g(x)


Note that when taking the derivative of the outer function, do not change the inner function g(x). 





The derivative of the inner function g(x)





The derivative of the outer function � EMBED Equation.DSMT4  ���, where � EMBED Equation.DSMT4  ���





The derivative of inner function � EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���





Derivative of inner function g at x 





Derivative of outer function f at � EMBED Equation.DSMT4  ���





Inner function





Outer function





Rewrite � EMBED Equation.DSMT4  ���as � EMBED Equation.DSMT4  ���.





Power rule and simplify.





� EMBED Equation.DSMT4  ���





(1, 1)





Product Rule








Distributive property





Simplify. 





Sum and Difference rules








Rule 3





Power Rule and Rule 1





Simplify.








Apply the Sum, Difference, and Power rules.


Note that � EMBED Equation.DSMT4  ���is a constant.





� EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���is a constant, it does not need to be rewritten. 








 Apply the Sum, Difference and Power rules. 








 Simplify. 





Note: � EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���





























































































































Apply the quotient rule for g(x).











Simplify





Point of inflection point. The rate of sales stop increasing.





Concave up. The rate of sales is increasing. More units are being sold each month.





Maximum potential sales





Concave down. The rate of sales is decreasing.  Less units are being sold each moth.





The exponential function with base e. 








Taking the nature logarithm





Slope is decreasing means


� EMBED Equation.DSMT4  ��� is decreasing. We say f is concave down. 





Slope is increasing means


� EMBED Equation.DSMT4  ���is increasing. We say


f is concave up.








Apply the product Rule and the Chain Rule. 








Simplify.








Factor out the common factor





Rewrite the function as a product.








Apply the Product Rule. 








Simplify. 





Factor out the common factor: � EMBED Equation.DSMT4  ���





Simplify.
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