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Indefinite Integrals 

Chapter intro text here…

8.1 Antiderivatives

In the previous chapters we learned how to find marginal cost given a cost function, marginal revenue given a revenue function, and marginal profit given a profit function.  Is it possible to do the reverse process?  Can we find a profit function
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if we are given the marginal profit function, 
[image: image2.wmf]'()

px

?   Lets take a simple function like 
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 is the derivative of the function 
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Example 8.1
Given 
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, show that its antiderivative is 
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Solution  (  
To show 
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 is the antiderivative of 
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 we need to take the derivative of 
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Since 
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Recall that the derivative of a function tells us about the slope of a line tangent to the graph of the function at some value x = a.  The graphs of a few functions of the form 
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 are shown in figure 8.1 below.
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Figure 8.1   Graphs of 
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Since the shape of each curve is the same and the curves are just translations of one another, we would predict that the slope of the tangent lines at all values of x = a must be the same for 
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 and 
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.  Figure 8.2 below has the tangent line drawn for both curves at x = –1.
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Figure 8.2   Graphs of tangent lines to 
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 at x = –1.

Since the two tangent lines at x = –1 are parallel, 
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.  Thus, it seems safe to conclude that 
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 for all values of x = a.  We can also show this algebraically and see that 
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 .  So, which function, 
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?  The answer is that both 
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, where C is some constant, is an antiderivative of 
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To actually find an antiderivative we need to use the following rule.

	Power Rule for Antiderivatives

	If 
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[image: image39.wmf]n

x

is 
[image: image40.wmf]1

1

1

n

xC

n

+

+

+

, where C is an arbitrary constant.


Example 8.2
Find the most general antiderivative of 
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Solution  (  
Using the power rule for antiderivatives we obtain
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This process of antidifferentiation is also know as integration.  Integration uses the symbol 
[image: image43.wmf]ò

 (called the integral sign) to denote that the antiderivative of a function is to be taken.  When the integral sign is used we always find the most general antiderivative of the function that immediately follows the integral sign.  The arbitrary constant C  that comes from finding the most general antiderivative is called the constant of integration.
Example 8.3
Find 
[image: image44.wmf]3

2

xdx

ò







Solution  (  
We need to find the most general antiderivative of 
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2

x

 using the power rule.  
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Notice that the integral sign and the dx are no longer written after the power rule is applied.  This is because the operation of integration has been performed.  You can think of this in the same manner you do the plus sign when you figure 2 + 2 = 4.  What happened to the plus sign on the right side of the equation?  It was no longer written because you performed the operation of addition.










(
The following rules will help us find antiderivatives of more complicated functions. 

	  Let k and C  be  constants, then

	1) 
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Example 8.4
Find the indefinite integral.

a) 
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Solution  (  


a)   Using the rules from above and the power rule we get
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Differentiating the answer will demonstrate that the answer checks.

b)   
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The last two antiderivatives we need to investigate at are those that involve the natural logarithm and the exponential function with base e.  Recall that 
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This leads us to the following rules.

	1)  
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Example 8.5
Find the indefinite integral.
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Solution  (  
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Example 8.6
Find f(x) given
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Solution  (  
First find
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Since 
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8.2  Integration using substitution

For differentiation we had special rules like chain rule, product rule, and quotient rule.  Since integration is the inverse process of differentiation, it seems reasonable to conclude that special rules exist for integration.  One special rule we will study for integration is called substitution, commonly called u-substitution.  Integration by substitution allows us to recover functions that required the chain rule to take its derivative.

For example, to find the derivative of 
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Thus,
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[image: image73.wmf]2223

6(1)(1)

xxdxxC

+=++

ò

.

But, how can we recover 
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and solve the above equation for dx
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Now substitute u for 
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We can use the general power rule for antiderivatives on the last integral 
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Finally we must substitute 
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 for u and we have recovered 
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It can, however, be difficult to determine what expression to make u.  The table below shows different types of problems that involve substitution.  In each case let u = f(x).

	i)
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Example 8.7
Find

a)  
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Solution  (  


a)  This is a type iii in the table above.  Since 
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Now substitute u for 
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After simplifying the integral will be completely in terms of u.
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Now we must substitute 
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b) This is a type ii in the table above.  Since 
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Now substitute u for
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c)  This is a type iv in the table above, so let 
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Making all substitutions we get the following integral.
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8.3  Applications of Antiderivatives
Example 8.8
The rate of change in sales of bicycles at Ted’s bicycle shop for the year 2001 is given by 
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, where x represents the month number in 2001 (i.e. x = 1 is January, x = 2 is February, … x = 12 is December).  If the shop sold 28 bicycles in the month of February, find the shop’s total sales function, 
[image: image112.wmf]()

TSx

.
Solution  (  
Since we are given the rate of change of sales, we can find the total sales function, 
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We also know that 
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 because the shop sold a total of 28 bicycles in the month of February.  Thus,
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Example 8.9
A company’s Profit function, in dollars, is given by 
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 where x is the number of items sold.  In addition, the company has a marginal revenue function of 
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Solution  (   Recall that Profit = Revenue – Cost, so 
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Since no revenue is generated when zero items are sold, 
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To find the cost to produce 10 items we need to find 
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.  Thus, it costs $838 to produce 10 of the company’s items.
Sample Quiz

Question 8.1  Show that 
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Question 8.2  Find the most general antiderivative of 
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Question 8.3  Find  
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Question 8.4  Find 
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Question 8.5  Find 
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Question 8.6  Find 
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Question 8.7  Find 
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Question 8.8  Sonbyrne Sunglass Company found that during the month of March its rate of change of sales could be modeled by 
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,  where x  represents the day of March.  If the company knows that 17 pairs of sunglasses were sold on March 30, find the total number of sunglasses the company sold on March 20.

Question 8.9  Larry's custom made furniture shop sells twin size bed frames for $250 each.  If the shop's marginal cost is represented by 
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and he knows that it costs $1476.50 to produce 1 bed, find the shop's profit, to the nearest dollar, for producing 20 beds.  (Assume the revenue function is linear.)
Question 8.10  Welch Construction has found that the value of the company tractor is decreasing at a rate given by 
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,  where t  represents the number of years after purchase. If the company purchased the tractor for $17650, what is the value of the tractor 3 years after purchase?

























































































































































































































































































































































































































































































































Note to authors: This is saved as chpt8_fig1.eps also.








�I don’t think that this is the way the majority of instructors teach substitution.  Consequently, this needs to be rewritten.


�Redo the solutions to these examples.


�We need to add in problems that involve solving problems like 


\int x sqrt(4x+1) dx.
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