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Chapter 1   Polynomials and Modeling 

1.1  Linear Functions 
Recall that a line is a function of the form y mx b= + , where m is the slope of the line (how steep the line 
is) and b gives the y-intercept (where the line crosses the y-axis).  Using the notation given in Chapter 0, a 
line is a linear function in the form ( )f x mx b= + . 
 
Example 1.1   Find the intercepts and slope of the linear function 3 15

4 4( )f x x= − . 
 
Solution   To find the y-intercept, you set 0x = .  Therefore, we have  

3 15 15
(0) (0)

4 4 4
f = − = −  

Thus we say that the y-intercept is the ordered pair (0, 15
4− ).  Set ( ) 0y f x= =  to find the x-intercept, 

3 15( ) 0
4 4

              3 15 0

                     3 15
                       5

f x x

x

x
x

= − =

− =
=
=

 

So, the x-intercept is the ordered pair (5, 0). ³ 
 
In this form the slope is the constant in front of the x and, therefore is equal to ¾.  The intercepts of this 
function can be seen in Figure 1.1. 
 
Figure 1.1   Graph of Example 1.1 
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Example 1.2   Given 2
5( ) 3f x x= − + , if x increases by 10, what is the corresponding change in 

( )f x ? 
 
Solution The slope of a line is the amount of change in y when x increases by one unit. Since 

2
5 0.4y

xm ∆ −
∆= = = − , therefore, if x increases by 1, y decreases by 0.4 units.   

 
Now, we have ? x = 10, then 

    0.4 10

    4

y m x∆ = ⋅ ∆
= − ⋅
= −

 
³ 

Using the Lines and Slope Applet, we adjust the change in x (the “Run”) to be about 10 and look for the 
corresponding change in the function value (the “Rise”).  From the screen we see this to be !4. 
 
Figure 1.2   Applet for Example 1.2 

 

 

BUSINESS APPLICATIONS 

The aspects of linear functions we just explored have particular meaning when discussing real life 
applications of linear functions.  One application of linear functions can be seen in business when 
discussing linear cost, revenue, and profit.   
 
A linear cost function consists of two parts: variable costs (costs that depend on the number of items 
produced) and fixed costs (costs independent of the number of items produced).  The total cost function is 
the sum of these costs. 
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Total Costs = Variable Costs + Fixed Costs
( )C x mx b= +

 

where x represents the number of items produced, m represents the cost to produce each item, and b 
represents the fixed costs. 
 
Figure 1.3   Graph of a Generic Cost Function 

 

A linear revenue function is found by multiplying the selling price of each item sold, p, by the total 
number of items sold, x.  Thus, we have 

Revenue = (Selling Price)(Quantity)
( )R x px=

 

Figure 1.4   Graph of a Generic Revenue Function 

 

Finally, a linear profit function represents the difference between the amount of money a company gains 
through revenue and the amount of money it pays out in the form of costs. 

( ) ( ) ( ) ( ) ( )
( )

P x R x C x px mx b px mx b
p m x b

= − = − + = − −
= − −

 

In this final format, notice that p m−  represents the profit for each item made and sold. 
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Figure 1.5   Graph of a Generic Profit Function 

 

From Figure 1.5, you can see that when ( ) 0P x = , a company is not losing or gaining money.  This point 
is called the break-even point. 
 
Example 1.3   A company is manufacturing and selling insulated mugs.  The company has monthly 
fixed costs of $1500 and there is a total monthly cost of $1800 when producing 100 mugs.  Each mug 
sells for $7. 
a.  Find the cost, revenue, and profit functions for the mug manufacturer, assuming each is a linear 
function.   
b.   How many mugs must the company make and sell in order to break even? 
 
Solution    
a.  First, gather all of the cost information together in ordered pairs of the form ( , ( ))x C x .  Thus, we have 
(0, 1500) and (100, 1800).  Next, find the slope between the two points: 

1800 1500 300
3

100 0 100
m

−
= = =

−
 

Since a linear cost function has the form ( )C x mx b= + , and we know the values of m and b (b is the fixed 
cost), the cost function is ( ) 3 1500C x x= + . 
 
To find the revenue function, all we need is the selling price, which is given as $7.  Therefore, the revenue 
function is ( ) 7R x x= . 
 
Finally, the profit function can be found using the cost and revenue functions we just found, as follows: 

( ) ( ) ( ) 7 (3 1500) 4 1500P x R x C x x x x= − = − + = −  

b.   The company will break even when ( ) 0P x = (the x-intercept of the profit function).  Therefore, 

( ) 4 1500 0
4 1500

1500 375
4

P x x
x

x

= − =
=

= =
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So, by making and selling 375 mugs, the company will neither gain nor lose money. ³ 
 
Example 1.4   A company has costs given by ( ) 55.5 1000C x x= +  and revenue given by 

( ) 80R x x= , where x represents the number of items the company makes and sells.  Find the number of 
items the company needs to produce in order to break even. 
 
Solution   A company breaks even when ( ) 0P x = .  Therefore, finding profit, 

( ) ( ) ( ) 80 (55.5 1000) 24.5 1000P x R x C x x x x= − = − + = −  

and setting it equal to zero we have  

( ) 24.5 1000 0
1000

40.82
24.5

P x x

x

= − =

= ≈
 

Thus, if it were possible to produce and sell a fraction of an item then they would break even at 2000
49  

items.  However, they most likely cannot produce and sell fractional items so this means that the company 
will never truly break even. (If they sell 40 items they will lose a slight amount of money, but if they sell 
41 items they will make a slight amount of money.)   ³ 

ECONOMIC APPLICATIONS 

Another application of linear functions can be seen in the discussion of supply and demand.  A linear 
supply function tells us the price at which a producer is willing to supply exactly x units of a product to 
the marketplace. 

( )S x p mx b= = +  

Generally, because producers are trying to make money, as the price they are given for each product 
increases, they are willing to increase the amount of product they supply to the marketplace.  Thus, as x 
increases, so does p (or ( )S x ), as shown in Figure 1.6.   
 
Figure 1.6   Graph of a Generic Supply Function 

 

Example 1.5   Suppliers are willing to provide 20 light bulbs at a price of 30 cents a piece and are 
willing to supply 50 light bulbs for 60 cents each.  Find the linear supply function describing the light 
bulb market. 
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Solution   Since the supply function is a linear function of the form ( )S x mx b= + , we can organize 
the given information as ordered pairs of the form ( , ( ))x S x .  Thus, we have (20, 0.30) and (50, 0.60) as 
two points on the line.  Now we can find the slope between the two points 

0.60 0.30 0.30 1
50 20 30 100

m
− −

= = =
−

 

and use the point-slope formula of a line to find the supply function as follows: 

( )1( ) 0.60 20
100
1 2

( ) .
100 5

S x x

S x x

− = −

= +
 

³ 

A linear demand function tells us the price at which a consumer is willing to buy exactly x units of a 
product from the marketplace. 

( )D x p mx b= = +  

Generally, because consumers are trying to save money, as the price of a product increases, they tend to 
buy less of that product.  Thus, as x increases, p (or ( )D x ) decreases, as shown in Figure 1.7. 
 
Figure 1.7   Graph of a Generic Demand Function 

 

From Figure 1.6 it is easy to see that the lowest price producers are willing to accept for their product is 
the y-intercept of the linear supply function.  Likewise, from Figure 1.7, you can see that the highest price 
consumers are willing to pay for a product is the y-intercept of the linear demand function. 
 
Example 1.6   Consumers are willing to buy 70 light bulbs at a price of 50 cents a piece and are 
willing to buy 30 light bulbs for 70 cents each.  What is the highest price consumers are willing to pay for 
a light bulb, assuming a linear demand function? 
 
Solution   Since the demand function is a linear function of the form ( )D x mx b= + , we can organize 
the given information as ordered pairs of the form ( , ( ))x D x .  Thus, we have (70, 0.50) and (30, 0.70) as 
two points on the line.  Now we can find the slope between the two points 

0.50 0.70 0.20 1
70 30 40 200

m
− − −

= = =
−
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and use the point-slope formula of a line to find the demand function as follows: 

( )1
( ) 0.70 30

200
1 17( ) .

200 20

D x x

D x x

−
− = −

−= +
 

Therefore, the highest price consumers are willing to spend for a light bulb is $ 17
20 0.85= . ³ 

 
If you overlay the supply and demand functions, you can find the point where they intersect, called the 
equilibrium point, demonstrating the so called Law of Supply and Demand. 
 
Figure 1.8   Graph of Market Equilibrium 

 

 
Example 1.7   Using the supply and demand functions found for the light bulb market in the 
previous two examples, find the equilibrium point for the light bulb market. 
 
Solution   The equilibrium point is found by finding the intersection point of the supply and demand 
functions of the market.  We found the supply function to be ( ) 0.01 0.1S x x= + and the demand function 
to be ( ) 0.005 0.85D x x= − + .  By setting these equal to each other, we can find the equilibrium quantity, 
x, as follows: 

0.005 0.85 0.01 0.1
0.75 0.015

50 .

x x
x

x

− + = +
=
=

 

By plugging this value into either the supply or demand function, we can then find the equilibrium price. 

( ) 0.01(50) 0.1 0.60S x p= + = =  

Thus, the equilibrium point for the light bulb market is (50, 0.60), meaning that both consumers and 
producers will be happy with buying and selling 50 light bulbs at a price of 60 cents a piece.  ³ 
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INVESTMENT APPLICATION 

A final application of linear functions can be seen when talking about the depreciation of an object over 
time.  An object depreciates if it loses value over time.  If the object loses value at a constant rate, then it 
is said to be depreciating linearly.   A linear depreciation function is given by 

( )V t mt b= +  

where t is the amount of time over which the object is losing value, m is the rate of depreciation (value 
lost per time period), and b is the initial value of the object.  Notice that m should always be negative 
since the value is decreasing over time. 
 
Figure 1.9   Graph of the Value of an Object Over Time 

 

The lowest possible value for an object is $0.  However, it is possible for an object to retain some amount 
of value, indefinitely.  The scrap value of an object is the lowest value an object obtains. 
 
Figure 1.10   Non-Zero Scrap Value of an Object 

 

 
Example 1.8   Patti buys a car for $17,575.  The value of her car linearly depreciates to $5400 over 
10 years.  Find the value of Patti’s car as a linear function of the number of years since she bought the car. 
 
Solution   The value of the car is a linear function of the form ( )V t mt b= + , where b represents the 
value of the car when 0t = (the original value of the car).  Therefore, the value of Patti’s car is of the 
form ( ) 17575V t mt= + .  To find the value of m, use the value of the car when 10t = : 

(10) (10) 17575 5400
10 12175

1217.5

V m
m

m

= + =
= −
= −
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Thus, the value of Patti’s car is given by ( ) 1217.5 17575V t t= − + when 0 10t≤ ≤ . ³ 

1.2  Quadratic Functions 
While linear data always increases or always decreases at a constant rate, not all data behaves in such a 
manner.  To account for more complicated situations, we will begin to introduce more complex functions.  
The first of these functions will be quadratic functions. 
 
A quadratic function is a function of the form 2( )f x ax bx c= + + , where a, b, and c are real numbers 
and 0a ≠ . 
 
The simplest quadratic function is 2( )f x x=  ( 1, 0, 0a b c= = = ).  It’s graph can be found by using the 
Plotting Applet and is shown in Figure 1.11. 
 
Figure 1.11   Graph of 2( )f x x=  using the Plotting Applet 

 

The graph of 2( )f x x= , and every quadratic function, is known as a parabola.  Every parabola has a 
lowest (or highest) point which is known as the vertex of the parabola.  From Figure 1.11 you can see that 
the vertex of the graph of  2( )f x x=  is at (0, 0).  You can also see from Figure 1.11 that if the graph was 
folded along a vertical line through the vertex ( 0)x = , the two halves of the parabola would lie exactly 
on top of one another.  This demonstrates the property that all quadratic functions are symmetric with 
respect to the vertical line through the vertex, which is known as the axis of the parabola. 

‘ 
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Example 1.9   Graph the following quadratic functions on the same axes.  Studying how does the 
value a effect the value of a quadratic function. 

a. 2( )f x x=  c.   2( ) 2f x x=  e.   2( ) 2f x x= −  

b.   21
( )

2
f x x=  d.   21

( )
2

f x x= −  f.   2( )f x x= −  

 

Solution   Using the Plotting Applet we can graph all six functions, shown in Figure 1.12. 
 
 
Figure 1.12   Graphs for Example 1.9 using the Plotting Applet 

 

Notice that the vertex of each of these parabolas is at (0, 0) and the axis of symmetry of each parabola is 
0x = . ³ 

 
Example 1.9 shows the effect of only changing the value of a in 2ax bx c+ + .  Notice that when 0a > , 
the parabola opens upward and the vertex is the lowest point on the graph, while when 0a < , the 
parabola opens downward and is the vertex is the highest point on the graph.  By comparing the graph of 
F to A, D to B, and E to C, we can see that in multiplying ( )f x by 1− , the graph of ( )f x  is reflected 
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over the x-axis, which is known as a vertical reflection of ( )f x .  By comparing the graphs of B and C to 
A  and the graphs of E and D to F, we can see that the magnitude of a determines how fast the graph of 

( )f x  is increasing or decreasing.  When 0 1a< < , we say the graph of ( )f x is vertically compressed 
by a factor of a and when 1a > , we say the graph of ( )f x  is vertically expanded by a factor of a.  
Finally, when 1a = , we have our simplest parabola, or its reflection across the x-axis, which all other 
parabolas are compared to.  These results are summarized in Table 1.1. 
 
EXAMPLE 1.10   Without graphing, how will the graph of 2( ) 3g x x= −  be different from the graph 
of 2( )f x x= ? 
 
Solution   The only difference between the two functions is the value of a.  Since 3a = − , the graph of 

( )g x can be found by vertically reflecting ( )f x and then vertically expanding it by a factor of 3. ³ 
 
EXAMPLE 1.11   Graph the following quadratic functions on the same axes and find the vertex of 
each. 

a.   2( )f x x=  b.   2( ) 2g x x= +  c.   2( ) 3h x x= −  

 
Solution   Using the Plotting Applet, we can graph all three functions as shown in Figure 1.13.  By 
examination we see that 
a.  The vertex of ( )f x  is at (0, 0). 
b.  The vertex of ( )g x  is at (0, 2). 
c.  The vertex of ( )h x  is at (0, !3). 
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Figure 1.13   Graphs for Example 1.11 using the Plotting Applet 

 ³ 
Example 1.11 shows the effect of only changing the value of c in 2ax bx c+ + .  If c is increased then the 
parabola will move up and if c is decreased then the parabola will move down.  This type of movement is 
known as a vertical shift.  These properties are summarized in Table 1.1. 
 
EXAMPLE 1.12   Without graphing, how will the graph of 2( ) 2 5g x x x= + +  be different from the 
graph of 2( ) 2 1f x x x= + + ? 
 
Solution   The only difference between the two functions is the value of c.  Since the value of c is 
increased by 4, the graph of ( )g x  can be found by vertically shifting the graph of ( )f x up 4 units. 
In order to compare two quadratic functions where the values of a, b, and/or c change, it is easier to look 
at the standard form of a quadratic function.  By completing the square we get 

2 2

2 2 2 2 2
2 2

2 2
2 4 2 4

2

( ) ( ) ( ( ) ) ( )

( ) ( ) ( ( )) ( )

( )

b b b b
a a a a

b b b b
a a a a

f x ax bx c a x x c a x x c a

a x c a x c

a x h k

−

= + + = + + = + + + −

= + + − = − + −

= − +

 

where 2
b

ah −=  and 2

4 ( )b
ak c f h= − = .  In standard form, the graph of the parabola can be found by 

shifting the graph of 2( )f x x=  horizontally (right if 0h > , left if 0h < ) by h units, vertically expanding 
or contracting by a factor of a, vertically reflecting if 0a < , and then shifting vertically by k units.  
Notice that by performing this transformation, the graph of a quadratic in standard form has a vertex at 
the point ( , )h k . ³ 
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Table 1.1   Summary Chart for Parabolas  

Let 2( ) ( )f x a x h k= − + .  Comparing this to the parabola 2x , 
1.  If 0a >  then ( )f x  opens upward and the vertex is the lowest point. 
2.  If  0a < then ( )f x  vertically reflected and the vertex is the highest point. 
3.  If 0 1a< <  then ( )f x  is vertically compressed relative to 2x . 
4.  If 1a >  then ( )f x  is vertically expanded relative to 2x . 
5.  If 0k > , then ( )f x  is vertically shifted upwards by k units. 
6.  If 0k < , then ( )f x  is vertically shifted downwards by k units. 
7.  If 0h > , then ( )f x  is horizontally shifted to the right by h units. 
8.  If 0h < , then  ( )f x  is horizontally shifted to the left by h units. 
9.  The vertex is at ( , )h k . 

 
Example 1.13   Find the vertex of the parabola 2( ) 2 3 6f x x x= − +  and determine whether it is a 
maximum or minimum. 
 
Solution   The x-coordinate of the vertex is given by  

( 3) 0.75
2 2(2)

bx
a

− − −= = =  

The y-coordinate of the vertex can be found by plugging in the corresponding x value: 

2(0.75) 2(0.75) 3(0.75) 6 4.875f = − + =  

Therefore, the vertex of the parabola is located at (0.75, 4.875).  Since 2 0a = > , then the parabola opens 
upward from the vertex, so the vertex is a minimum. ³ 
 
Example 1.14   How is the graph of  21

5( ) ( 2) 4f x x−= + − different from the graph of 2( )g x x= ? 
 
Solution   The graph will be horizontally shifted to the left by 2 units, reflected over the x-axis, 
vertically contracted by a factor of 1

5 , and then vertically shifted down 4 units.  Using the Plotting 
Applet, these transformations can be seen in Figure 1.14. 
 

p 
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Figure 1.13   Graphs for Example 1.11 using the Plotting Applet 

 ³ 
Many real-life situations are quadratic in nature, as they portray information that increases to a point and 
then decreases, such as revenue or profit, or decreases to a point and then increases, such as costs. 
 
Example 1.15   Given the demand of watches to be 3 60p x= − + , how many watches must be sold 
in order to maximize revenue? 
 
Solution   Recall that revenue is given by ( )R x px=  where p = price per item sold and x = number of 
items sold.  When price is not fixed, but determined by the buying habits of consumers, price is given as 
the demand function.  Thus,  

2( ) ( 3 60) 3 60R x px x x x x= = − + = − +  

Notice that the revenue function is a quadratic function.  Because 3 0a = − < , the revenue function will be 
a parabola that opens downward when it is graphed.  Thus, the vertex is the maximum point on the 
revenue function.  The x coordinate of the vertex is given by  

60 10
2 2( 3)

bx
a

− −= = =
−

 

Therefore, 10 watches must be sold in order to maximize revenue.  ³ 
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1.3  Cubic and Higher Polynomials 
Linear and quadratic functions are two functions belonging to a family of functions called polynomials.  
In general, a polynomial is a function of the form 1

1 0( ) n n
n nf x a x a x a−

−= + + +L  where 0 1, , na a a…  are 
real numbers and n is a whole number, giving the degree of the polynomial.  With this definition, linear 
functions ( ( ) )f x ax b= +  are known as first-degree polynomials, while quadratic functions 

2( ( ) )f x ax bx c= + +  are known as second-degree polynomials. 
 
Two higher degree polynomials that will be encountered often are third-degree polynomials (also known 
as cubic functions) and fourth-degree polynomials (also known as quartic functions).  Their most basic 
graphs are shown in Figure 1.12. 
 
Figure 1.15   Graphs of Cubic and Quartic Functions 

  

To determine how polynomial functions behave when their x values become negatively and positively 
large (as x approaches negative and positive infinity), without looking at their graphs (since they can be 
hard to graph without the help of technology), it is only necessary to look at the leading term, n

na x  .  
Tables 1.2 and 1.3 list the long range behavior of polynomials. 
 
Table 1.2   Summary Charts for Long Range Function Behavior of Even-Degree Polynomials 

Leading Coefficient As x → −∞  As x → ∞  

0na >  ( )f x → ∞  ( )f x → ∞  

0na <  ( )f x → −∞  ( )f x → −∞  

 
Table 1.3   Summary Charts for Long Range Function Behavior of Odd-Degree Polynomials 

Leading Coefficient As x → −∞  As x → ∞  

‘ 
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0na >  ( )f x → −∞  ( )f x → ∞  

0na <  ( )f x → ∞  ( )f x → −∞  

 
Example 1.16   Describe the end behavior of the following functions 
a. 5 4 2( ) 2 4 3 6f x x x x= − + −  
b. 4( ) 3 6 9g x x x= − + −  
c. 7 2( ) 4 8 2h x x x= − − +  
 
Solution    
a. ( )f x  is an odd-degree polynomial since 5n = , and because 2 0na = > , we know as x → ∞ , 

( )f x → ∞  and we know as , ( )x f x→−∞ →−∞ . 
 
b. ( )g x  is an even-degree polynomial since 4n = , and because 3 0na = − < , we know as x → ∞ , 

( )f x → −∞  and we know as , ( )x f x→−∞ →−∞ . 
 
c. ( )h x  is an odd-degree polynomial since 7n = , and because 4 0na = − < , we know as x → ∞ ,  

( )f x → −∞  and we know as , ( )x f x→−∞ → ∞ . ³ 

1.4  Modeling with Polynomials 
In certain situations, data is collected and used to describe a phenomenon that is occurring.  In order to 
describe the situation accurately and be able to make predictions of future occurrences, a mathematical 
model is needed.  In this section we will discuss the use of polynomial models. 
 
When thinking of using a linear model, the data should fall, more or less, in a straight line and be always 
increasing or always decreasing.  Figure 1.16 shows examples of linear data sets. 
 
Figure 1.16   Graphs of Linear Data 
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When data increases and then decreases or decreases and then increases, a quadratic model should be 
explored.  Figure 1.17 shows quadratic data. 
 
Figure 1.17   Graphs of Quadratic Data 

             

If the behavior is more complex, even higher order polynomials can be used to fit the data.  In order to 
find a model that explains a set of given data, you can use the Modeling applet.   
 
Figure 1.18   Modeling Applet 

 

Notice that in addition to giving you the equation of the model at the top of the applet, you are also given 
an 2R  value at the bottom of the applet.  This value is the square of the correlation coefficient.  The 
correlation coefficient tells you how well your model explains the data and thus, how accurate it would 
be at predicting values outside of your data set.  The closer, in magnitude, the correlation coefficient is to 
1, the better your model is at explaining your data.  Thus, an 2R  value close to 1 tells you that the model 
is a good model for your data. 

‘ 
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Example 1.17   The table below represents the percentage of females (16 or older) that were a part 
of the civilian labor force in January of the respective years. 
 

Year 1950 1960 1970 1980 1990 2000 
Percent of Working Females 33.4 37 43.3 51.6 57.7 60.3 

  Source: http://data.bls.gov/servlet/SurveyOutputServlet 
 
a. Find the best-fitting linear model to this data. 
b. How accurate is the model you found? 
c. Use your model, to predict the percentage of working females in the year 2010, if this employment 
trend continues.  
 
Solution    
a. We will let the independent variable, x, represent the year, where the value of x is given as the number 
of years since 1900. (i.e. 50 represents the year 1950).  The dependent variable, y, will represent the 
percentage of working females.  The results of inputting the data into the Modeling Applet and clicking 
on the linear regression button is shown in Figure 1.19 
 
 
Figure 1.19   Linear Fit for Example 1.17 

 

Therefore, 0.58542 3.30952y x= +  is the best-fitting linear model to the data. 
 
b. The 2R  value for this model is given as 0.98174, which is very close to 1, and, therefore, shows this 
model to be an accurate model for the data. 
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c. What will be happening in the year 2010 is equivalent to finding the y-value corresponding to x = 110.  
Using the Modeling Applet we get 
 
Figure 1.20   Modeling Applet with 110x =  

 

so, about 67.7% of females will be a part of the civilian labor force, if this trend continues. ³ 
 
When you are not told which model to find (as is the case in real life), you must decide which model best 
represents the data you are given.  Moreover, you are not limited to only linear models.  We will restrict 
our discussion in this section to polynomial models, but you will encounter the use of other models in 
later chapters, as different functions are introduced. 
 
When trying to determine which model best represents your data, first look at a scatterplot of your data 
and determine the possible shape your model should have. (Remember to think of the end behavior your 
model should have for predicting values outside of your given data set.)  Second, find all models which fit 
the shape of your data and plot each model with your data. (Remember to zoom out to see the end 
behavior of your models.)  Last, compare the models to find the best fit.  You are looking for the simplest 
model which accurately predicts the given situation.  
 
Example 1.18   The following table gives the 30-year fixed-rate conventional mortgage interest 
rates from 1972 to 1982. 
 

Year 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 
Interest Rate 7.38 8.04 9.19 9.04 8.86 8.84 9.63 11.19 13.77 16.63 16.08 
  Source: http://www.federalreserve.gov/releases/h15/data/a/cm.txt 
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Find the best-fitting polynomial model to this data and explain why the model you chose is the best 
model.  
 
Solution   We will let the independent variable, x, represent the year, where the value of x is given as 
the number of years since 1972. (i.e. 0 represents the year 1972).  The dependent variable, y, will 
represent the interest rate.  We will first input the data into the Modeling Applet and look at the scatterplot 
of the data.  The results are shown in Figure 1.21. 
 
Figure 1.210   Interest Rate Data 

 

Since the data does not strictly increase, we can rule out using a linear model.  Likewise, it begins by 
increasing and then decreases, but then increases again so a quadratic model would not seem to be the 
best fit for this data.  The only two polynomial models worth trying are cubic and quartic shown below. 
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Figure 1.22   Modeling Applet with Cubic and Quadratic Fits. 

         

It is clear that even though quartic is the most complicated polynomial model, it best represents the given 
data set.  Thus, the best-fitting model is 

4 3 20.01114 0.23231 1.41692 3.02917 7.01258y x x x x= − + − + +  ³ 

Sample Quiz 
 
Question 1.1   Given 2

3( ) 5f x x−= + , if x decreases by 9, what is the corresponding change in the 
function value? 
  
Question 1.2   Small fish bowls sell for $5.00.  The company making the fish bowls has total costs of 
$550 when making 50 fish bowls and $650 when making 100 fish bowls.  Find the profit function of the 
company making the fish bowls. 
 
Question 1.3   At a price of $40 per book, 500 books can be sold and at a price of $30 per book, 100 
books can be sold.   
a.  Assuming linear demand, find the demand equation as a function of the number of books sold. 
b.  What is the highest price consumers are willing to pay for this book? 
 
Question 1.4   Kathryn bought a brand new car in 1999 for $20,500.  In 2002 it is only worth $13,285.  
Assuming linear depreciation is occurring, what will her car be worth in 2006? 
 
Question 1.5   Find the vertex of 2( ) 3 6 7f x x x= − + . 

‘ 
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Question 1.6   How will the graph of 2( ) 3( 4) 2g x x= − − +  be different from the graph of  2( )f x x= ? 
 
Question 1.7   The linear demand function for a particular item is given by 2 50p x= − + .  If the linear 
cost function for the company producing the item is given by ( ) 30 40C x x= + , find the number of items 
the company must make and sell in order to maximize it’s profits. 
 
Question 1.8   Describe the end behavior of the function  10 8 7( ) 6 3 2 1f x x x x x= − + − + . 
 
Question 1.9   The following table gives the life expectancy of females at birth (in years) for the given 
years. 

Year 1929 1939 1949 1959 1969 1979 1989 1999 
Life Expectancy 58.7 65.4 70.7 73.2 74.4 77.8 78.5 79.4 

  Source: National Vital Statistics Report, Vol. 50, No. 6, March 21,2002 
Find the equation of the best-fitting quadratic model to this data. 
 
Question 1.10   The following table gives the median income (in dollars) for a four-person family living 
in Texas between 1990 and 2000. 
 

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 
Income 37,789 39,204 40,342 40,688 42,570 43,977 46,757 48,007 51,148 53,291 53,513 

  Source:  
Which polynomial model (linear, quadratic, cubic, or quartic) best fits the given data and why? 
 



 

ACOW Group  2/27/2003 

Chapter 2   Exponentials and Logarithms 

The exponential function is one of the most important functions in the field of mathematics.  It is widely 
used in a variety of applications such as compounded interest, population growth, and carbon dating.  
This chapter is a brief introduction to the exponential function and its inverse function, the logarithmic 
function.  We will look at various properties of  these two functions, learn to solve equations involving 
them, and then finally use them to model real world situations. 

2.1 Exponential Functions 
An exponential function is a function of the form ( ) xf x b=  where 0b >  and 1b ≠ .  Some properties of 
exponential functions are summarized in Table 2.1.  Figure 2.1 shows the two different types of curves 
that are generated by an exponential function.   
 
Table 2.1   Properties of Exponential Functions  

Let ( ) xf x b=  where 0b >  and 1b ≠ . 
 1.  If 1b >  then ( )f x  is an exponential growth function. 
 2.  If  0 1b< < then ( )f x  is an exponential decay function. 
 3.  The domain of ( )f x  is ( , )−∞ ∞ . 
 4.  The range of ( )f x  is (0, )∞ . 
 5.  The y-intercept is (0, 1). 

 
Figure 2.1   Graphs of exponential growth and decay functions.   
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x 

5 

3 

1 

1 3 -3 -1 

f(x) 

  x           f(x) 
  
–2         –0.44 
–1         -0.67  
  0             1 
  1             1.5 
  2            2.25 

x 

18 

12 

6 

1 3 -3 -1 

f(x) 

  x           f(x) 
  
–2            16 
–1             4  
  0             1 
  1           .25 
  2           .0625 

EXAMPLE 2.1   Determine whether each of the following are exponential growth or decay functions.  
Then graph each function and verify the domain, range and y-intercept of the function are as stated in 
Table 2.1. 
 

a.  
3( )
2

x

f x  =  
 

 b.  
1( )
4

x

f x  =  
 

 

 
Solution    
a. This is an exponential growth function because 1.5b =  and that is greater than 1.   

 
Figure 2.2   Graph of Example 2.1 a. By inspection of the graph in Figure 2.2, the domain is ( ),−∞ ∞  
and the range is ( )0,∞ . 
 
 

 

 
b.  This is an exponentia l decay function because 0.25b =  and that is less than 1. 
 
Figure 2.3   Graph of Example 2.1 b.  By inspection of the graph in Figure 2.3, the domain is 
( ),−∞ ∞  and the range is ( )0,∞ . 
 

 

³ 
 
The function ( ) 2xf x =  is an exponential function because the independent variable, x, is part of the 
exponent.  If we were given a table of values, or a data set, how could we determine if it modeled an 
exponential function?  One method is to calculate the ratio of successive ( )f x  values when the x values 
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are equally spaced.  If the ratios are all the same (or close to the same) the table of values would model an 
exponential function. The value of the successive ratios is the base of the exponential function. 
 
EXAMPLE 2.2   Determine if the table of values given below represents an exponential function.  If 
so, find the base of the function. 
 

x 2 3 4 5 6 

f(x) 6.25 15.625 39.063 97.656 244.14 

 
Solution   Compute the successive ratios, as shown below. 

(3) 15.625 (4) 39.063 (5) 97.656 (6) 244.142.5, 2.5, 2.5, 2.5
(2) 6.25 (3) 15.625 (4) 39.063 (5) 97.656

f f f f
f f f f

= = = ≈ = ≈ = =  

Since all ratios are approximately equal to 2.5 we conclude that the table of values does represent an 
exponential growth function with a base of 2.5. ³ 
 
 
Exponential functions have a variety of applications in the business world and it is often necessary to 
solve these equations for different variables.  In order to solve these equations we must know the laws and 
definitions associated with exponential functions that are listed in Table 2.2. 
 
Table 2.2   Properties and Laws of exponents ***a,b 0, positive?? 
 

Let a and b be positive numbers and let m and n be real numbers. Then, 

1.  0 1a =  2.  
1m
ma

a
− = , where 0a ≠  

3.  ( )/
m

m n mn na a a= =  4.  m n m na a a +⋅ =  

5.  
m

m n
n

a
a

b
−=    6.  ( )m m mab a b=  

7.  ( )m n m na a ⋅=   8.  
m m

m

a a
b b

  = 
 

 

 
Example 2.3   Use the laws and definitions of exponents from Table 2.2 to solve the following 
equations for x. 
 

Ä 

U 

p 

Ä 



CHAPTER 2   EXPONENTIALS AND LOGARITHMS     27 

ACOW Group  2/27/2003 

a.  3 25 5x x+ =  b.  2 58 64x x−=  c.  
2

1 13 0
27

x
x+  − = 

 
 

d.  
2

9
3

x
x

xx −  ⋅ =  
 

 e.  9 12 3 27x x− ⋅ = −   

 
Solution    
a.  The expressions on both sides of the equation have a base of 5.  Since these expressions and the bases 
are equal we can conclude that their exponents must also be equal.  So we set up an equation stating this 
fact and solve it for x. 

3 2
3

x x
x

+ =
=

 

b.  Here the bases of each term are not equal to each other.  Thus, our first step is to search for a common 
base.  We know that 264 8=  so we can rewrite 64 as 28 . Use the laws from Table 2.2 to find 

( )2 52 2(2 5) 4 108 8 8 8
xx x x− − −= = =  

Now solve for x by setting the exponents equal,  

4 10

10 3
10
3

x x

x

x

= −
=

=

 

c.  Since the bases on each term are different we must rewrite 27 as 33  and apply laws and definitions of 
exponents,  

( )
2

21 1 3 1 6
3

13 3 3 3 3 0
3

x
xx x x x+ + − + − − = − = − = 

 
 

Now solve for x, 

1 63 3
1 6

7 1
1

.
7

x x

x x

x

x

+ −=
+ = −

= −

= −

 

d.  This problem differs from the previous three because there is an x in each term that accompanies the 
exponential function.  Our strategy in solving this problem will still involve getting the same bases, but 
now we must factor the expression and solve using zero product property1.  Begin with the left side of the 
equation and writing 9 as 32, 

                                                 
1 That is, in a series of products, if any one of the terms are zero, then the entire product is zero. 
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( )2 29 3 3
xx xx x x

−− −⋅ = = ⋅  

Now work with the right side of the equation, 

( )
2 2 2

2 2
2 2 3

3 33
x

x xx

x x x x −  = = = 
 

 

Next set them equal to each other, 

2 2 23 3x xx x− −=  

Rearrange to have all the variables on the left and factor.  

( )

2 2 2

2

3 3 0

3 1 0

x x

x

x x

x x

− −

−

− =

− =
 

Now by applying the zero product property we obtain: 

0x = , 23 0x− = , and 1 0x− = . 

Since an exponential function can never equal zero, 23 0x− ≠ , the only solutions are 0,1x = .   
 
e.  Since each exponential function is accompanied by an x, we will use the strategy from the previous 
problem.  That is, we will get the bases the same and then factor. 

( )2
3 12 3 27x x− ⋅ = −  

Let 3xu =  for ease in factoring and find 

( ) ( )( )2 23 12 3 27 12 27 9 3 0x x u u u u− ⋅ + = − + = − − =  

The first term has the solution 9u =  or 23 9 3x = = , so 2x = .  The second term has the solution 3u =  or 
13 3 3x = = , so 1x = .  Thus, the two solutions to the given equation are x = 1, 2.   

 
A check of all these answers through substitution of the solution value into the original equation is 
encouraged.  ³ 

2.2 Applications of Exponential Functions 
One of the most common types of exponential functions in the banking industry is compound interest,  
which can be easily derived from the simple interest formula.   
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Simple Interest:  If P dollars is deposited into an account that earns an annual interest of r% 
(expressed as a decimal), then the amount of interest accumulated, I, after t years is given by 

I Prt=  

 
Suppose you accumulated $1,000 in cash from your high school graduation.  If you deposit this money 
into an account that earns 5% simple interest, then at the end of 4 years you would have earned 

I = (1,000)(0.05)(4) = $200. 

So you would have $1,000 + $200 = $1,200 in the account at the end of 4 years.  In general,  
the amount in an account that earns simple interest for t years is  

( )1

A P I
A P Prt

A P rt

= +
= +

= +

 

Another type of interest commonly used in the banking industry is compound interest.  This type of 
interest is often computed more than once a year and the account earns interest on the interest computed 
the previous compounding period.  This is what makes compound interest more appealing to investors 
than simple interest.  For example, if you take the $1,000 accumulated from your high school graduation 
and deposit it into an account that earns 5% compounded quarterly, we can compute the amount in the 
account at the end of 1 year.  To solve this we use (1 )A P rt= +  with 1

4t =  because the interest is figured 
quarterly ( 1

4  of a year). 
 

Quarter   (1  )A P rt= +  Amount at the end 
of the Quarter 

1st ( )1
41,000 1 0.05( ) 1,000(1.0125)A = + =  $1,012.50 

2nd ( ) 21,012.5 1.0125 1,000(1.0125)(1.0125) 1,000(1.0125)A = = =  $1,025.16 

3rd 2 31,025.16(1.0125) 1,000(1.0125) (1.0125) 1,000(1.0125)A = = =  $1,037.97 

4th  3 41,037.97(1.0125) 1,000(1.0125) (1.0125) 1, 000(1.0125)A = = =  $1,050.95 

 
If we look at the expression for A, near the end of the formula we can see a pattern that is developing for 
compound interest.  The exponent on 1.0125 is the same as the compounding period.  Thus for the 16th 
compounding period (4 years) the amount in the account would be 161,000(1.0125) 1,219.89= .  If we 
compare this number to the amount in the account that earned simple interest for 4 years, we see that the 
compounded account earned $19.89 more.  This difference is greater for larger initial deposits and when 
the money is left in the accounts for longer time periods.   
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It is without a doubt that the computation above was long and tedious.  We would not want to use this 
method of computing for larger numbers, therefore we generalize the computation and derive a formula 
for compound interest.  
 
Compound Interest Formula:  If P dollars is deposited into an account earning r% annual interest 
(expressed as a decimal) and is compounded n times a year, then the amount in the account, A, after 
t years is given by 

1
ntrA P

n
 = + 
 

 

 
Interest can be compounded a number of different ways.  Below are the n values for the different 
compounding periods. 
 
Table 2.3   Compounding Periods 
 

 Frequency, n 
Annually 1 
Semi-annually 2 
Quarterly 4 
Monthly 12 
Weekly 52 
Daily 365 

 
Example 2.4   Find the amount in an account after 10 years if $2,500 is compounded monthly at 8%. 
 
Solution   Here 2,500, 10, 12, 0.08P t n r= = = = . Thus, the amount, A, would be 

(12)(10)0.082,500 1 $5,549.10
12

A  = + ≈ 
  . 

Or, we can us the compound interest calculator applet to find the same result as shown in Figure 2.4. 
 
Figure 2.3   Compound Interest Applet for Example 2.4 

 ³ 
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Example 2.5   How much money should be deposited into an account that earns 6.5% compounded 
semi-annually if, after 7 years, the account must be worth $10,000? 
 
Solution  Here 10,000, 0.065, 2, 7A r n t= = = = . Plugging in these values into the formula, we have 

(2)(7)
140.06510,000 1 (1.0325)

2
P P = + = 

 
. 

Now solve for P,  

14

10,000 $6,390.56
(1.0325)

P = ≈ . 

 
Figure 2.4   Compound Interest Applet for Example 2.5 

 ³ 

 
Suppose you invest $1 in an account that earns 100% interest for 1 year.  How would the amount of 
money at the end of the year change if the interest was compounded more and more often?  The 
compound interest formula with these values would be 

11 1
n

A
n

 = + 
 

 

In Table 2.4 we see how more frequent compounding (larger n) gives you a larger and larger A, up to a 
point.   
 
Table 2.4   Amount of Money vs. Compounding Frequency 
 

n 1 10 100 1,000 10,000 100,000 1,000,000 

A 2 2.5937 2.7048 2.7169 2.7181 2.7182 2.7182 

 
We see that as n grows larger, A becomes approximately 2.7182.  This number (called e) is frequently 
used in the field of mathematics and is used in the formula for continuously compounded interest. 
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Continuously Compounded Interest:  If P dollars is deposited into an account earning r% 
annual interest (expressed as a decimal) and is compounded continuously, then the amount in the 
account, A, after t years is  

rtA Pe=  

 
Example 2.6   Find the amount in an account after 10 years if $2,500 is deposited into an account 
that earns 8% compounded continuously. 
 
Solution   Here P = 2,500, r = 0.08, and t = 10.  When we substitute into the continuous compound 
interest formula we get: 

(0.08)(10)2,500 5,563.85A e= ≈  

In the module there is a continuous compounding calculator that will give the same result, shown below, 
 
Figure 2.5   Continuous Compounding Applet for Example 2.6 

 

So there will be approximately $5,563.85 in the account after 10 years.  Comparing this answer to the one 
obtained in Example 2.4 shows that continuously compounded interest earns $14.75 more than 
compounding quarterly. ³ 

2.3 Logarithmic Functions 
We can solve exponential equations when the bases are the same, but how would we solve an equation 
like 2 10x = ?  To solve this we need to use the inverse of an exponential function, the logarithmic 
function. 
 

Definition of Logarithm:  For all 0b > , 1b ≠ , and 0y > , xy b= if and only if logb y x=  

 
Note: logb y x=  is read “log to the base b of y equals x”. 
 
Two commonly used logarithmic functions are the common logarithm ( 10log ) and the natural logarithm 
( loge ).  Typically we write log for 10log  and ln for loge . 
 
Example 2.7   Rewrite 26 36=  and 4ke =  as logarithmic equations. 
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x 
2 3 –1  1 

  3 

  1 

 –1  

2 yx =      y 
 
0.25        –2  
0.5          –1 
 1             0  
 2             1  
 4             2 

 –3  

 
Solution   26 36=  is in the exponential form, xy b=  , with 36y = , 6b =  and 2x = .  Match this to 
the logarithmic form, logb y x= , to find 6log 36 2= . Matching terms for the exponential form 4ke =  
gives 4y = , b e=  and x k= .  Put these values into the logarithmic form gives log 4 ln4e k= = . ³ 
 
Example 2.8   Rewrite log 9 2b =  and ln 2k =  as exponential equations. 
 
Solution   log 9 2b =  is in the logarithmic form, logb y x= , with b b= , 9y =  and 2x = .  Match this 
to the exponential form and find 2 9b = .  Rewrite ln 2k =  as log 2e k =  and find that b e= , y k=  and 

2x = .  Put this into the exponential form and find 2e k= . ³ 
 
Figure 2.6 below shows the graph of 2logy x=  and its corresponding table of values.  Notice that the 
table of values is constructed by using the exponential form of 2logy x= . 
 
Figure 2.6   Graph of  2logy x= . 
 

 

 
 
Table 2.5   Logarithmic Functions 
 

Let ( ) logbf x x= , where 0b >  and 1b ≠ . 
Then,   
             1.  The domain of ( )f x  is (0, )∞ . 
 2.  The range of ( )f x  is ( , )−∞ ∞ . 
 3.  The x-intercept is (1, 0).  

 
Example 2.9   Graph ( ) lnf x x=  and verify its domain and range. 
 
Solution   The graph is shown in Figure 2.7.  The domain is (0, )∞  and the range is ( , )−∞ ∞ . 
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x 
2 3 –1  1 

  3 

  1 

 –1  

  x              y 
 
0.25        –1.39  
0.5          –0.69 
 1             0  
 2             0.69  
 3             1.1 

 –3  

Figure 2.7   Graph of  lny x= . 
 

 

 
To solve equations involving logarithms, we will need to know the Laws of Logarithms listed in Table 
2.6.   
 
Table 2.6   Properties of Logarithms 
 

If M, N, and b are all positive numbers where 1b ≠  and c is any real number, then: 

1.  log log logb b bMN M N= +  5.  log 1 0b =  

2.  log log logb b b
M

M N
N

= −  6.  log c
b b c=  

3.  log logc
b bM c M=  7.  logb Mb M=  

4.  log 1b b =   

 
Example 2.10   Given log 4 0.7124b =  and log 3 0.5645b = , use the definition and laws of 
logarithms to evaluate the following expressions: 

a.  log 12b     b.  log 9b    c.  
16

log
3b  

Solution    

a.  ( )log 12 log 4 3 log 4 log 3 0.7124 0.5645 1.2769b b b b= ⋅ = + = + =  

b.  2log 9 log 3 2log 3 2(0.5645) 1.129b b b= = = =  

c.  
2

216 4log log log 4 log 3 2log 4 log 3 2(0.7124) 0.5645 0.8603
3 3b b b b b b

   = = − = − = − =     
 ³ 

 
Example 2.11   Use the definition and laws of logarithms to solve the following equations for x.   
a.  ln( 2) 4x + =   b.  log(log2 ) 1x =  
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Solution    
a.  First rewrite the logarithmic equation as an exponential equation then solve for x: 

4

4

2

2 .

e x

e x

= +

− =
 

Substitute this into the original equation to check: 

4 4ln( 2) ln( 2 2) ln( ) 4ln 4x e e e+ = − + = = = . 

b.  Since this is an embedded logarithm we must rewrite as an exponential equation twice, and then solve 
for x: 

1

10

10

10 log2

10 2

10 .
2

x

x

x

=

=

=

 

Check this solution in the original equation, 

( ) [ ]( ) ( )
10

1010log log 2 log log 10 log 10log 10 log 10 1 1
2

    ⋅ = = = ⋅ =    
  

 

³ 
 
Example 2.12   Solve the following exponential equations for x. 

a.  ( )2 52 4xe − =    b.  9xe =    c.  log(2 1)10 ln2x+ =  

 
Solution    
a.  Divide both sides of the equation by 2, 

2 5 2xe − =  

Since the variable is in the exponent, rewrite as a logarithmic equation and then solve for x: 

2 5 ln2
2 ln2 5

ln2 5 2.8466.
2

x
x

x

− =
= +

+= ≈

 

b.  Rewrite as a logarithmic equation, 

ln9 x=  

Solve for x by squaring both sides, 

U 

Ä 

U 



36     CHAPTER 2   EXPONENTIALS AND LOGARITHMS 

ACOW Group  2/27/2003 

( )2ln9 4.8278.x = ≈  

c.  Use logarithmic properties from Table 2.6 on the left side of the equation and then solve for x, 

2 1 ln2
2 ln2 1

ln2 1 0.1534
2

x
x

x

+ =
= −

−= ≈ −

 

³ 

2.4 Modeling 
As we have seen in earlier sections, we can model real world data with exponential and logarithmic 
functions.   
 
Example 2.13   The data below represents the amount of goods (in millions of dollars) the United 
States imported from Hungary from 1993 to 2000.  Find the best fitting exponential model for this data 
set and use the model to predict the amount of imported goods in the year 2010. 
 

Year 1993 1994 1995 1996 1997 1998 1999 2000 

Amount of goods imported 
(in millions of dollars) 401 470 547 676 1079 1567 1893 2715 

 Source:  http://www.ita.doc.gov/td/industry/otea/usfth/aggregate/HL00T11.html  
 
Solution   We will make the independent variable, x, the import year where the value of x represents 
the number of years after 1990 (i.e. 4 represents 1994).  The amount of goods imported will be the 
dependent variable, y.  Using the regression calculator available for these modules we input the data, click 
on plot data, and then choose the exponential regression button.  In doing so we obtain ( )146.87 1.33 xy =  
with 2 0.97691R = as shown in Figure 2.8. 
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Figure 2.8   Modeling Applet for Example 2.13 

 

To predict the amount of imported goods in the year 2010 we input x = 20 into the regression calculator 
and find y = 21,474.84 million dollars.  ³ 
 
Example 2.14   The table below represents the amount of goods (in millions of dollars) the United 
States imported from Indonesia from 1993 to 2000.  Find the best fitting logarithmic model for this data 
set and use the model to predict the amount of imported goods in the year 2005. 
 

Year 1993 1994 1995 1996 1997 1998 1999 2000 

Amount of goods imported 
(in millions of dollars) 5435 6547 7435 8250 9188 9341 9525 10367 

Source:  http://www.ita.doc.gov/td/industry/otea/usfth/aggregate/HL00T11.html 
 
Solution   Using the same set up as in Example 2.13 we find the logarithmic regression model to be 

1041.33 4007.79(ln )y x= +  with 2 0.98769R = , as shown below. 
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Figure 2.9   Modeling Applet for Example 2.14 

 

To predict the amount of imported goods in the year 2005 we input x = 15 into the regression calculator 
and find y = 11,894.63 million dollars.  ³ 
 
Example 2.15   The table below represents the average price (in dollars) ranchers in the United 
States received per head of cattle from 1996 to 2001.   Find the best fitting model for this data set and use 
the model to predict the average price per head in 1993. 
 

Year 1996 1997 1998 1999 2000 2001 

Average price paid per head of 
cattle (in dollars) 503 525 603 594 683 725 

  Source:  http://www.usda.gov/nass/pubs/agr01/acro01.htm , hog/cattle/sheep 
 
Solution   Let x be the number of years after 1990 and y be the dollar amount paid per head of cattle.  
Using the regression calculator we get the following equations and R2 values. 
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Regression Model Equation R2 

Exponential 319.14(1.08) xy =  0.95136 

Logarithmic 173.87 367.78(ln )y x= − +  0.92635 

Linear 45 223y x= +  0.94724 

Quadratic 22.57 1.29 401.29y x x= + +  0.95383 

Cubic 3 20.37 6.87 79.69 189.73y x x x= − + +  0.95407 

Power ( )0.61164.68y x=  0.93917 
 
By comparing the R2 values we see that the exponential, quadratic, and cubic models have the highest 
value.  Since the cubic value is not significantly higher than the quadratic we can eliminate the cubic 
model because the difference in the R2 value does not justify the more complicated model.  Thus, we must 
decide between the exponential and quadratic model by studying their overall shape as seen in Figure 
2.10. 
 
Figure 2.10   Modeling Applet for Example 2.15 

 

Both graphs extend to positive infinity with the same general shape, but from 0 to 5 the graphs have 
slightly different characteristics.  It appears that the exponential model has the same general shape as the 
data from [0, 5] whereas the quadratic model tends to deviate from the data’s shape.  It is for this reason 
that the exponential model would best fit this data set.  Now using this model to predict the price per head 
of cattle in 1993 we need to find y when 3x = .  Using the regression calculator we find $399y ≈ . ³ 
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Sample Quiz 
Question 2.1   Determine whether the following table represents an exponential function by calculating 
successive f(x) ratios.  If it represents an exponential function, give the value of the base and state whether 
it is a growth or decay function. 
 

x 3 4 5 6 7 8 9 

f(x) 42 51 62 75 90 109 133 

 
Question 2.2  Solve 4 13 2 36x x− ⋅ = −  for x. 
 
Question 2.3   How much money should Dave deposit into an account that earns 5.5% annual interest 
compounded monthly if he wants to have $30,000 in the account 18 years from now? 
 
Question 2.4   After some research, you found two investment options for your $18,000 graduation gift. 
Bank Two offers 8% compounded semiannually and Bank One offers 7.5% compounded monthly. What 
is the difference in value in these two options at the end of 4 years?  
 
Question 2.5  Find the amount in an account after 7 years if $3,000 is compounded continuously at 
5.25%. 
 
Question 2.6  Solve ln(ln2 ) 0x =  for x. 
 
Question 2.7  The number of DVD players supplied to an electronics store is given by the equation 

0.004( ) 150 pS p e=  where p is the price in dollars.  If the store is supplied 215 DVD players, at what price 
should they sell them? 

Question 2.8  Given log 5 2.3219b = , log 3 1.5850b = , and log 7 2.8074b = , find 
21

log
25b

 
 
 

. 

Question 2.9  The following table represents the assets (in billions of dollars) of FDIC insured 
Commercial Banks (y) in the United States from 1987 to 2001 (x).  Find the best fitting exponential and 
logarithmic model, along with their R2 values, and then determine which of the two would be the better 
model.  
 

x 1987 1988 1989 1990 1991 1992 1993 1994 

y 2,913 3,056 3,207 3,361 3,377 3,438 3,569 3,893 

x 1995 1996 1997 1998 1999 2000 2001  

y  4,171 4,397 4,771 5,181 5,469 5,983 6,360  

Source:  http://www3.fdic.gov/sod/pdf/dsta_2001.pdf  
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Question 2.10  The following table represents the assets (in billions of dollars) of FDIC insured Savings 
Institutions (y) in the United States from 1987 to 2001 (x).  Find the best fitting model for this data and 
state why it is the best model.  
 

x 1987 1988 1989 1990 1991 1992 1993 1994 

y 1,441 1,556 1,512 1,317 1,161 1,078 1,004 999 

x 1995 1996 1997 1998 1999 2000 2001  

y  1,017 1,023 1,029 1,045 1,126 1,179 1,275  

Source:  http://www3.fdic.gov/sod/pdf/dsta_2001.pdf 
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Chapter 4   Rates of Change 

In this chapter we will investigate how fast one quantity changes in relation to another.  The first type of 
change we investigate is the average rate of change, or the rate a quantity changes over a given interval.  
For example, if you have 15 minutes to arrive at a destination that is 10 miles away, you could calculate 
the average rate of change by dividing 10 miles by ¼ hour.  Thus, you would need to travel 40 miles per 
hour to arrive at your destination on time.  The second rate of change that we investigate, and actually 
begins our study of differential calculus, is instantaneous rate of change, or the rate a quantity changes at 
a given instant.  Police officers parked on the side of a road, calculating the speed of cars with their radar 
gun is an example of instantaneous rate of change. 

4.1  Average Rate of Change 
Table 4.1 below shows the daily low temperatures in College Station, Texas for the first 30 days in 
October 2002.  This data is graphed as a scatter plot in Figure 4.1. 
 
Table 4.1 Daily low temperatures in October 2002 for College Station, TX. 
 

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Low  ( °F ) 
Temperature 

71 73 72 72 71 74 70 71 64 62 63 59 58 53 48 

Day 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
Low  ( °F ) 
Temperature 

48 49 60 63 61 60 63 64 64 58 57 63 63 58 54 

       Source:  http://www.met.tamu.edu/met/osc/cll/oct02.htm 
 
Figure 4.1   Scatter Plot of Table 4.1 data 
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We can use this data to find the average change in temperature between the 1st and 15th day.   Since the 
temperature was 71 degrees on the 1st of October and 48 degrees on the 15th of October we can conclude 
that over the 14-day period, the temperature changed 23 degrees.   Representing this as a ratio we get 

change in temperature 71 48 23
1.64

number of days passed 1 15 14
−

= = ≈ −
− −

. 

This tells us that the temperature dropped at an average rate of 1.64 degrees per day between the 1st and 
15th day of October.  Figure 4.2 below shows a graph of the average rate of change between 1st and 15th 
day. 
 
Figure 4.2   Average rate of change in low temperatures between 1st and 15th day of October. 
 

 
A similar calculation can be done for the change in temperature between the 16th and 19th day. 

change in temperature 63 48 15
5

number of days passed 19 16 3
−

= = =
−

. 

Thus, the temperature increased at an average rate of 5 degrees per day between the 16th and 19th day of 
October.  Figure 4.3 shows a graph of the average rate of change between the 16th and 19th days. 
 
 
Figure 4.3   Average rate of change in low temperatures between 16th  and 19th day of October. 
 

 
If we look closely at Figures 4.2 and 4.3 we notice that the way we calculate the average rate of change is 
the same way we calculate the slope of a line.  As a result we define the average rate of change as follows. 
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g(x) 

P1 

P2 

secant line 

Average Rate of Change   
The average rate of change between two points 1 1 1( , )P x y  and 2 2 2( , )P x y  is 

2 1

2 1

change in 
change in 

y yy y
x x x x

−∆
= =

∆ −
 

The units for the average rate of change are 
units of 
units of 

y
x

. 

 
Example 4.1   The table below shows the hourly earnings (in dollars) for manufacturing plant 
employees in the United States from the years 1997 to 2001.  Find the average rate of change in the 
hourly earnings from 1999 to 2001. 
 

Year (x) 1997 1998 1999 2000 2001 
Hourly Earnings (y) 13.17 13.49 13.90 14.37 14.83 

   Source:  http://ftp.bls:gov/pub/suppl/empsit/ceseeb2.txt 
 
Solution   The average rate of change is 

14.83 13.9 0.93
0.465

2001 1999 2
y
x

∆ −
= = =

∆ −
. 

Therefore, the average hourly earnings were increasing at a rate of 46.5 cents per year between 1999 and 
2001.  ³ 
 
We can also find the average rate of change over a given interval when data is modeled by a function. The 
average rate of change between any two x values is found by calculating the slope of the secant line, a line 
that intersects a curve at two points.  The secant line that contains points 1P  and 2P  is shown in Figure 4.4 
below. 
 
Figure 4.4   The secant line, or average rate of change, through points 1P  and 2P . 
 

 

 
Example 4.2   The graph in Figure 4.5 below represents the number of meters an object is above 
ground after t seconds have elapsed. Find the average rate of change between P1 (3, 25) and P2 (8, 18). 
 
Figure 4.5   Graph of the distance an object traveled. 
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Solution   The point P1 (3, 25) means that after 3 seconds the object was 25 meters above the ground 
and P2 (8, 18) means that after 8 seconds the object was 18 meters above the ground.  The average rate of 
change is the slope of the secant line containing P1 and P2. 

25 18 7
1.4

3 8 5
−

= = −
− −

. 

This tells us that between the 3rd and 8th second, the object was falling at an average rate of 1.4 meters 
per second. ³ 
 
Example 4.3   The number of annual layoff events that occurred in the United States from 1996 to 
2001 can be modeled by 4 3 2( ) 0.066 0.8 3.26 5.2 8.42, 1 6f x x x x x x= − + − + ≤ ≤  where x is the number 
of years since 1996 and f(x) is the number of thousand of events.  Find the average rate of change in 
layoff events from 1996 to 2001.     (Source:  http://data.bls.gov/servlet/SurveyOutputServlet) 
 
Solution    Since 1996 corresponds to x = 1 and 2001 corresponds to x = 6, the number of thousands 
of layoff events in 1996 is (1)f  and the number of thousands of layoff events in 2001 is (6)f .  Figure 
 4.6 shows a graph of ( )f x  and the secant line that contains the points at x = 1 and x = 6. 

 
Figure 4.6   Graph of f(x) and the secant line that contains the points at x = 1 and x = 6. 
 

 

 
The slope of the secant line is  

(6) (1) 7.316 5.746 1.57
0.314

6 1 6 1 5
y f f
x

∆ − −
= = = =

∆ − −
 

This means that the number of layoff events was increasing at a rate of 0.314 thousand, or 314, events per 
year from 1996 to 2001. ³ 
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a a + h  

h 

f (a) 

f (a + h) 

It is useful to derive a general formula that will calculate the slope of the secant line for any function f(x).  
To do this let a and a h+  be two points on a continuous function f(x) such that a a h< +  as shown in 
Figure 4.7 below.  (Notice that h is the distance between the two points a and a h+ .) 
 
Figure 4.7   Secant line on ( )f x  
 

 

 
The slope of the secant line that contains (a, f(a)) and ( a h+ , ( )f a h+ ) is 

sec
( ) ( ) ( ) ( )f a h f a f a h f a

m
a h a h
+ − + −

= =
+ −

. 

The formula above is known as the difference quotient. 
 
Example 4.4      The 30-year mortgage rates during the month of October 2002 can be modeled by 

3 2( ) 0.00017 0.0075 0.067 5.8f x x x x= − + − +  where x represents the day in October and f(x) represents 
the interest rate.  Use the difference quotient to calculate the average rate of change in 30 year fixed 
mortgage rates from October 15th to October 21st. 
 
Solution   Since October 15th is represented by x = 15 and October 21st is represented by x = 21 we 
know that 21 15 6h = − = .  Using the difference quotient to find the slope of the secant line we get  

sec
( ) ( ) (15 6) (15) (21) (15) 6.1261 5.9088

0.0362
6 6 6

f a h f a f f f f
m

h
+ − + − − −

= = = = =  

So between October 15th and October 21st, the interest rates were changing at an average rate of 0.0362 
percent per day as shown in Figure 4.8 below. ³ 
 
Figure 4.8   Average rate of change of fixed mortgage rates from the 15th to the 20th of October. 
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30 Year Fixed Mortgage Rates in October 2002

5.6

5.7

5.8

5.9

6

6.1

6.2

0 5 10 15 20 25 30

Day in October

In
te

re
st

 R
at

e

(Source  http://www.bankrate.com/ust/subhome/mtg_m1.asp) 
 

4.2  Instantaneous Rate of Change 
The average rate of change is a good calculation to use if we are looking for the rate of change over an 
interval.  If, however, we want to find how the interest rates were changing on the 20th of October, 
calculating the slope of the secant line is no longer possible because the 20th of October is represented by 
a single point.  Thus, we need the slope of the line that touches the graph at 20x = .  This type of line is 
called a tangent line.  We can find an approximation of the slope of the tangent line by calculating the 
slopes of secant lines that are close to 20x =  as shown in Figure 4.9. 
 
Figure 4.9   Slopes of secant lines where point b is getting closer and closer to point a (h is getting 
smaller). 
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(Source  http://www.bankrate.com/ust/subhome/mtg_m1.asp) 
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If we zoom in closer to point a, we can see, as shown in Figure 4.10 below, that the slope of the secant 
lines are approximately the same as the slope of tangent line at a. 
 
Figure 4.10   Graphs of the secant lines when we zoom in around point a and the graph of the tangent 
line at point a. 
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As the distance between a and b decreases, that is as h approaches zero ( 0h → ), the slopes of the secant 
lines approach the slope of the line tangent at x a= , as shown above in Figures 4.9 and 4.10.  The slope 
of the tangent line at x a=  gives the rate of change in the mortgage rates at the instant x a= , therefore 
we call the slope of the tangent line the instantaneous rate of change of f(x) at x a= .  This leads us to the 
following formula. 
 
If ( )f x  is a continuous function, the rate of change at a single point x a= , commonly called the 
instantaneous rate of change at a or the slope of the line tangent to ( )f x  at a, can be found by 
computing 

tan 0

( ) ( )
'( ) lim  

h

f a h f a
f a m

h→

+ −
= =  

provided the limit exists.   
 
Note:   The notation '( )f a , read “f prime of a”, is commonly use to denote the instantaneous rate of 
change of ( )f x  at x a= . 
 
Example 4.5   Janice’s Jewelry store has found that the amount of profit her store makes each day 
after Christmas can be modeled by 2( ) 4 40 60P x x x= − + −  where x is the number of days after December 
25th   and P(x) is the profit, in hundreds of dollars.  Find the instantaneous rate of change in profit for 
Janice’s Jewelry store for the following days and interpret each answer. 
a.  the 3rd day after Christmas.  
b.  the 6th day after Christmas.   
 
Solution     
a.   The 3rd day after Christmas is represented by 3x = , thus we substitute 3a =  into the instantaneous 
rate of change formula above we get  

tan 0

(3 ) (3)
'(3) lim

h

P h P
m P

h→

+ −
= =  

It will be easiest if we first find (3 )P h+ .  In doing so we get  

2 2

2 2

(3 ) 4(3 ) 40(3 ) 60 4(9 6 ) 120 40 60

36 24 4 40 60 4 16 24

P h h h h h h

h h h h h

+ = − + + + − = − + + + + −

= − − − + + = − + +
 

Now we need to find (3)P  

2(3) 4(3) 40(3) 60 4(9) 120 60 24P = − + − = − + − =  

Substituting these expressions into the formula above we get 

2

tan 0 0 0 0

(3 ) (3) 4 16 24 24 ( 4 16)
lim lim lim lim( 4 16) 16
h h h h

P h P h h h h
m h

h h h→ → → →

+ − − + + − − +
= = = = − + =  

This means that the profit was increasing at a rate of $1600 per day on the 3rd day after Christmas.  
Figure 4.11 below shows a graph of this instantaneous rate of change. 
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Figure 4.11   A graph of the tangent line, or instantaneous rate of change, at 3x = , which represents 
the third day after Christmas. 
 

 

 
b.  The 6th day after Christmas is represented by 6x = , thus we substitute 6a =  into the instantaneous 
rate of change formula above we get  

tan 0

(6 ) (6)
'(6) lim

h

P h P
m P

h→

+ −
= =  

First find (6 )P h+ . 

2 2

2 2

(6 ) 4(6 ) 40(6 ) 60 4(36 12 ) 240 40 60

144 48 4 180 40 4 8 36

P h h h h h h

h h h h h

+ = − + + + − = − + + + + −

= − − − + + = − − +
 

Then find (6)P . 

2(6) 4(6) 40(6) 60 4(36) 240 60 36P = − + − = − + − =  

Substituting this into the formula above we get 

2

tan 0 0

0 0

(6 ) (6) 4 8 36 36
'(6) lim lim

( 4 8)
lim lim( 4 8) 8

h h

h h

P h P h h
m P

h h
h h

h
h

→ →

→ →

+ − − − + −
= = =

− −
= = − − = −

 

This means that the profit was decreasing at a rate of 8 hundreds dollars per day on the 6th day after 
Christmas.  A graph of this is shown in Figure 4.12 below. ³ 
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Figure 4.12   A graph of the tangent line, or instantaneous rate of change, at 6x = , which represents 
the 6th day after Christmas. 
 

 

 
Example 4.6   Find the equation of the line tangent to 

1
( )f x

x
=  at 1x = . 

Solution   The tangent line will have slope tan '(1)m f=  and will contain the point (1, (1)) (1,1)f = .  
Thus, using the point-slope formula, the equation of the line tangent to  

1
( )f x

x
= at 1x =   

will have the form (1) '(1)( 1)y f f x− = − .  The slope of the tangent line is computed as shown below. 

tan 0 0 0 0

0 0

1 1 11(1 ) (1) 1 1 1 1'(1) lim lim lim lim

1 1
lim lim 1

1 1

h h h h

h h

h h
f h f h h h hm f

h h h h
h
h h h

→ → → →

→ →

+ −− −+ − + + + += = = = =

− −
= ⋅ = = −

+ +

 

The equation of the tangent line is 1 1( 1)y x− = − −  which is the same as 2y x= − + .  A graph of this is 
shown below in Figure 4.13. ³ 
 
Figure 4.13   A graph of the line tangent to 1( ) xf x =  at 1x = . 
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Example 4.7   Find the equation of the line tangent to ( ) 1f x x= +  at 3x = . 
 
Solution   The slope of the line tangent to ( )f x  is 

tan 0 0 0

(3 ) (3) 3 1 4 4 2
'(3) lim lim lim

h h h

f h f h h
m f

h h h→ → →

+ − + + − + −
= = = =  

To find this limit we must multiply the numerator and denominator by the conjugate of 4 2h + −  which 

is 4 2h + + .   

( ) ( )tan 0 0 0

0

4 2 4 2 4 4lim lim lim
4 2 4 2 4 2

1 1 1
lim 0.25

2 2 44 2

h h h

h

h h h hm
h h h h h h

h

→ → →

→

+ − + + + −= ⋅ = =
+ + + + + +

= = = =
++ +

 

The equation of the line tangent to ( )f x  at 3x =  is  

(3) '(3)( 3)
2 0.25( 3)

0.25 0.75 2 0.25 1.25

y f f x
y x

y x x

− = −
− = −

= − + = +
 

A graph of this is shown in Figure 4.14 below.      ³ 
 
Figure 4.14   A graph of the line tangent to ( ) 1f x x= +  at 3x = . 
 

 

 
Example 4.8   Arlen’s Air Service provides airline service for private individuals.  The cost for 
flying from Austin, TX to Denver, CO can be modeled by 3 2( ) 12 36 50C x x x x= − + +  where x is the 
number of round trips made and ( )C x  is the cost of the trip in hundreds of dollars.  Arlen has found that 

the instantaneous rate of change of ( )C x  at any point x a=  is 2'( ) 3 24 36C a a a= − + .  Find slope of the 
line tangent to ( )C x  at 8x =  and interpret your answer. 
 
Solution   We are given 2'( ) 3 24 36C a a a= − + , thus the slope of the line tangent to ( )C x  at 8x =  is 
found by evaluating '(8)C .   
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3 2
tan '(8) 8 12(8) 36(8) 50 82m C= = − + + = . 

We conclude that the cost for flying from Austin to Denver on the 8th round trip was increasing at a rate 
of $8200 per round trip.   
 
Example 4.9   In Figure 4.15 below, ( )g x  represents the number of units a company sells in one 
month and x represents the day of the month.  Determine whether the slope of the tangent lines at points 
a, b, and c are positive, negative, zero, or undefined.  Interpret your answers. 
 
Figure 4.15  Graph for Example 4.9 
 

 

 
Solution   The tangent lines to each point are shown in Figure 4.16 below and we make the following 
conclusions.   

• The tangent line at a is positive which means that on the ath of the month the rate of change of 
sells was increasing.   

• The slope of the tangent line at b is zero, therefore, on the bth day of the month the rate of change 
of sells was not changing.   

• The slope of the tangent line at c is negative, therefore, on the cth day of the month the rate of 
change of sells were decreasing.  ³ 

 
Figure 4.16   Graph for Example 4.9 
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Sample Quiz 
Question 4.1  The table below shows the number of unemployed Texans in the San Marcos\Austin area 
from January 2001 to December 2001.  Let x represent the month, with 1x =  representing January, and y 
represent the number of unemployed Texans.  Find the average rate of unemployment from April to 
November. 
 

Month Jan Feb Mar Apr  May June July Aug Sept Oct Nov Dec 

Number of 
Unemployed 

16189 17970 20010 20907 25617 34055 34257 35222 36212 35453 37097 35245 

 Source:  http://data.bls.gov 
 
Question 4.2  The given graph represents the annual percentage rates for a 1 year certificate of deposit 
(CD) from September 1, 2002 to November 1, 2002.  Use the graph to find the average rate of change for 
a 1 year CD from P1 (16, 2.37) to P2 (68, 2.1).   Source:  http://www.bankrate.com 
 

 

 
Question 4.3  The number of  annual layoff events that occurred in the United States from 1996 to 2001 
can be modeled by 4 3 2( ) 0.066 0.8 3.26 5.2 8.42, 1 6f x x x x x x= − + − + ≤ ≤  where x is the number of 
years since 1996 and ( )f x  is the number of thousand of events.  Find the average rate of change in layoff 
events from 1997 to 2000. 
 
Question 4.4  Given 3( ) xf x = , find the instantaneous rate of change of ( )f x  at 2x = . 
 
Question 4.5  Given ( ) 2f x x= − , find the slope of the line tangent to ( )f x  at 3x = . 
 
Question 4.6  Mike’s Mean Machine Shop sells motorcycles and has determined that 2( ) 0.02R x x x= +  
models the amount of revenue (in thousands of dollars) after selling x motorcycles.  Find and interpret the 
instantaneous rate of change of the shop’s revenue at 6x = . 
 
Question 4.7  Find the equation of the line tangent to 2( ) 3 1f x x= −  at 2x = − . 
 
Question 4.8  Find the equation of the line tangent to ( )g x x=  at 9x = . 



56     CHAPTER 4   RATES OF CHANGE 

ACOW Group  2/27/2003 

a 

b 

c 

 
Question 4.9  Kathryn’s Pottery shop has determined that 2( ) 0.45 10g x x= −  models the number of  
pieces of pottery she can make in x hours.  Find the slope of the line tangent to ( )g x  at 16x =  and 
interpret your answer. 
 
Question 4.10  Use the graph below to determine whether the slope of the tangent lines at points a, b, and 
c are positive, negative, zero, or undefined. 
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Chapter 9   Definite Integrals 

In the previous chapter we found how to take an antiderivative and investigated the indefinite integral.  In 
this chapter the connection between antiderivatives and definite integrals is established as we try to solve 
one of the most famous problems in mathematics, finding the area under a given curve.  

9.1 Approximating Area Under a Curve 
When it comes to finding the area of basic geometric shapes such as circles, squares, rectangles, triangles, 
and trapezoids, we can rely on geometric formulas to calculate the area.   
 
Example 9.1   Find the area of the shaded regions. 
 
a.   b. 

 

 
Solution    
a.  The shaded region is half of a circle with a radius of 3.  Thus, we will use the formula for the area of a 
circle ( 2A rπ= ), multiply it by 0.5 and use 3r = .   

( )2.5 (3) .5(9 ) 4.5regionA π π π= = =  

b.  The shaded region is made up of a rectangle ( ), 3, 2A lw l w= = =  and a triangle 
( )1

2 , 3, 1A bh b h= = = .  If we add the areas of the two geometric shapes, we will have found the area of 
the  shaded region. 
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Figure 9.1   Graph for Example 9.1a 
 

 

( ) ( )shaded rectangle triangle
1 1 3 15

3 2 3 1 6
2 2 2 2

A A A lw bh   = + = + = ⋅ + ⋅ ⋅ = + =   
   

 

The area of the trapezoid is therefore 7.5 square units. ³ 
 
Finding the area between the x-axis and a curve ( )f x  on a given interval is a bit more challenging if the 
region formed is not a “basic” geometric shape.  For example, the area under the curve ( ) 1f x x= +  on 
[0 ,4] forms the shape shown in Figure 9.2. 
 
Figure 9.2   Graph of  ( ) 1f x x= + . 
 

 

 
We can see from the figure that the area between the x-axis and ( )f x  is not a shape that has a familiar 
formula for finding the area.  When this occurs, we use rectangles to approximate the area of the region.  
If we draw four rectangles, as seen in Figure 9.3, we can sum up the area of the rectangles (R1 + R2 + R3 + 
R4) and obtain an approximation of the area under the curve. 
 
Figure 9.3   Graph of  ( ) 1f x x= +  with 4 right endpointsH. 
 

 

 

                                                 
H The rectangles have been constructed such that the right endpoint, ix , of the interval touches the curve.  Because 
of this, we call these rectangles right endpoint rectangles 
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R1 R2 R3 R4 {
1b =

 {
1b =

 {
1b =

 {
1b =

 





 




 



 



 (1)h f=  (2)h f=  (3)h f=  (4)h f=  

We will, however, find an overestimate of the area because the rectangles extend above the curve.  
Nonetheless, we will have some idea of the area under the curve.   
 
To find the area of each rectangle in Figure 9.3 we need to find the base and height of each rectangle.  
The base of each rectangle, x∆ , is found by taking the length of the given interval, max minx x−  and 
dividing it by the number of rectangles constructed, n .  This leads to the following calculation. 

max min 4
1

4
x x

x
n
−

∆ = = = . 

The height of each rectangle is the value of the function from the right end of each interval. Figure 9.4 
below shows the dimensions of each rectangle. 
 
Figure 9.4   Dimensions of  R1, R2, R3, and R4. 

 
 

 
The sum of the rectangles are found in the table below.  The area, A, is the base times the height. 
 

Rectangle # Base, x∆  Right Endpt, ix  Height, ( )if x  ( )iA x f x= ∆ ⋅  

R1 1 1 (1) 1 1 2f = + =  (1)(2) = 2 

R2 1 2 (2) 2 1 2.41f = + ≈  (1)(2.41) = 2.41 

R3 1 3 (3) 3 1 2.73f = + ≈  (1)(2.73) = 2.73 

R4 1 4 (4) 4 1 2 1 3f = + = + =  (1)(3) = 3 

   Total Area (Right) 10.14 

 
Since this is an overestimate, the area under the curve is less then 10.14 units. 
 
We can also approximate the area under the curve using left endpoint rectangles as shown in figure 9.4.  
This approximation will give us an underestimate because the rectangles do not fill the entire area under 
the curve. 
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R0 R1 R2 R3 

Figure 9.5   Graph of  ( ) 1f x x= +  with 4 left endpoint rectangles. (rename rectangles!!) 
 

 

 
The base of each rectangle is still 1 unit but the height of each rectangle is the value of the function from 
the left end of each interval. The sum of the rectangles is found in the table below. 
 

Rectangle # Base x∆  Left Endpt, ix  Height, ( )if x  ( )iA x f x= ∆ ⋅  

R1 1 0 (0) 0 1 1f = + =  (1)(1) = 1 

R2 1 1 (1) 1 1 2f = + =  (1)(2.41) = 2.41 

R3 1 2 (2) 2 1 2.41f = + ≈  (1)(2.73) = 2.73 

R4 1 3 (3) 3 1 2.73f = + ≈  (1)(3) = 3 

   Total Area (Left) 9.14 

 
Thus, the area must be greater than 9.14 units. 
 
In general, we can find an approximation for the area under a continuous curve ( )f x  on [ , ]a b by drawing 
n equally spaced right (or left) endpoint rectangles under the curve and then finding the sum of the area of 
the rectangles.  If x∆ is the width of each rectangle and ix an endpoint where 0x a=  and nx b= , then the 
sum of the area of n rectangles is 

st nd rd tharea of 1 area of 2 area of 3 area of n
...

rectangle rectangle rectangle rectangle
A

       
= + + + +       

       
 

For right endpoint rectangles the sum of the area rectangles can be denoted as H 

Total Area (Right) = 1 2 3
1

( ) ( ) ( ) ( ) ... ( )
n

i n
i

x f x x f x x f x x f x x f x
=

∆ = ∆ + ∆ + ∆ + + ∆∑  

For left endpoint rectangles, the sum of the area of the rectangles can be denoted as 

Total Area (Left) = 
1

0 1 2 1
0

( ) ( ) ( ) ( ) ... ( )
n

i n
i

x f x x f x x f x x f x x f x
−

−
=

∆ = ∆ + ∆ + ∆ + + ∆∑  

                                                 
H The symbol ∑ is the notation for “the sum of ” 
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Example 9.2   Approximate the area under the curve 2( ) 2f x x= +  on [0,2]  using  
a. 4 right endpoint rectangles  
b. 8 left endpoint rectangles. 
State if the estimate is an overestimate or an underestimate. 
 
Solution    
a.  The graph of 2( ) 2f x x= +  on [0, 2] with the 4 right endpoint rectangles is shown in Figure 9.6. 
 
Figure 9.6   Graph of 4 right endpoint rectangles 
 

 

 
The base of each rectangle is  

2 0 1
0.5

4 2
b a

x
n
− −

∆ = = = =   

and the height is ( )if x  where ix  is the right endpoint of each interval.  The calculation below shows the 
sum of the areas of the four rectangles. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

4

1 2 3 4
1

2 2 2 2

Total Area (Right)= ( ) 0.5 0.5 0.5 0.5

0.5 0.5 0.5 1 0.5 1.5 0.5 2

0.5 0.5 2 0.5 1 2 0.5 1.5 2 0.5 2 2

7.75

i
i

x f x f x f x f x f x

f f f f
=

 ∆ = ⋅ + ⋅ + ⋅ + ⋅ 
 

= ⋅ + ⋅ + ⋅ + ⋅

       = + + + + + + +       
=

∑

 

Thus, the area under the curve is less than 7.75 square units. 
 
b.  The graph of 2( ) 2f x x= +  on [0, 2] with the 8 left endpoint rectangles is shown in Figure 9.7. 
 
Figure 9.7   Graph of 8 left endpoint rectangles.  (rename rectangles!!) 
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The base of each rectangle is  

2 0 1
0.25

8 4
b a

x
n
− −

∆ = = = =   

and the height is ( )if x  where ix  is the left endpoint of each interval.  The table below shows the sum of 
the areas of the eight rectangles. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) (
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

8

1

1 2 3 4 5 6 7 8

2 2

Total Area (Left)= ( )

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0 0.5 0.25 0.5 0.5 0.5 0.75 0.5 1 0.5 1.25

0.5 1.5 0.5 1.75

0.5 0 2 0.5 0.25 2

i
i

x f x

f x f x f x f x f x f x f x f x

f f f f f f

f f

=

 ∆ 
 

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

+ ⋅ + ⋅

   = + + + +   

∑

( )2... 0.5 1.75 2

6.1875

 + + 
=

 

Since these rectangles all lie below the curve, the estimate for the area under the curve is an 
underestimate. ³ 
 
There are numerous methods of using rectangles to approximate the area under a curve.  A few of the 
other methods are shown in Figure 9.8 below. 
 
Figure 9.8   Other methods to approximate 2( ) 2on [ 2,2]f x x= + − . 
 
 

  
(a) Lower Sum Method – all 
rectangles lie below the curve. 

(b) Midpoint Method – the 
midpoint of all rectangles are 
touching the curve. 

(c) Upper Sum Method – all 
rectangles lie above the curve. 

9.2  Definite Integrals and the Fundamental Theorem of Calculus 
The methods used in the previous section allow us to obtain a good approximation of the area under a 
curve, but can we make this approximation better?  If we take thinner and thinner rectangles, we can 
make the approximation of the area under the curve more accurate.  In Example 9.2 we found an 
approximation of 6.1875 square units for the area under the curve using 8 left endpoint rectangles.  If we 
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would have used 4 left endpoint rectangles our approximation would have been 5.75 square units.  The 
approximation with 8 rectangles was more accurate simply because more rectangles were used.  Compare 
the rectangles in Figure 9.9. 
 
Figure 9.8   Graphs of  ( ) 1f x x= +  with 8 and 16 right endpoint rectangles. 
 

  

 
It appears that the amount of excess area made by the 16 rectangles is considerably less than the excess 
area made by the 8 rectangles.  One can imagine that the approximation would be even better if we could 
fit 100 rectangles or even 1000 rectangles under the curve.  What if we had an infinite number of 
rectangles drawn under the curve? As one might hypothesize, the sum of an infinite number of rectangles 
does accurately find the area under a curve, and we represent the area under a curve using the definite 
integral.  
 

The Definite Integral 
For a continuous function f on the interval [ , ]a b H let ( )b a

nx −∆ =  and ix be the right endpoint of 
the n intervals. Then the definite integral of f is 

1

( ) lim ( )
b n

in
ia

f x dx x f x
→∞

=

= ∆ ⋅∑∫  

 
Some useful properties of definite integrals are listed in Table 9.1. 
 
Table 9.1 Properties of Definite Integrals 
 

[ ]

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

b b

a a

b b b

a a a

c b c

a a b

k f x dx k f x dx

f x g x dx f x dx g x dx

f x dx f x dx f x dx

⋅ =

± = ±

= +

∫ ∫

∫ ∫ ∫

∫ ∫ ∫

 

 

                                                 
H Note: “a” is referred to as the lower limit and “b” as the upper limit.  Together, “a” and “b” are known as the limits 
of integration. 
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Using the definition of the definite integral the area in Figure 9.9 is represented as  

( )
4

0

1x dx+∫  

Example 9.3   Represent the area of the shaded regions from Example 9.1 as definite integrals. 
 
Solution    

a.  
3

2

3

9 x dx
−

−∫  

b.  
3

1
3

0

( 2)x dx+∫  ³ 

From Example 9.1 (b) we found the area to be exactly 15
2  and from Example 9.3 (b) we found that the 

area can be represented as a definite integral. We can put the two of these together and conclude  

3

1
3

0

15
( 2)

2
x dx+ =∫ . 

Next we can connect the notion of an antiderivative and a definite integral. Take the antiderivative of 
1

3 2x + , 

2 21 1 1
( ) 2 2

3 2 6
F x x x C x x C = + + = + + 

 
 

Note that (0)F C=  and (3)F  is 

21 15
(3) (3 ) 2(3)

6 2
F C C= + + = +  

now find (3) (0)F F− , 

15 15
(3) (0)

2 2
F F C C− = + − = . 

We can see that finding the antiderivative ( )F x  of a function and then evaluating ( ) ( )F b F a−  gives the 
exact area under the curve.  This process is an important theorem in calculus known as the Fundamental 
Theorem of Calculus. 
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The Fundamental Theorem of Calculus 
If f is a continuous function defined on a closed interval [ , ]a b  and F is an antiderivative of f,  
then 

]( ) ( ) ( ) ( )
b

b

a
a

f x dx F b F a F x= − =∫  

 
Example 9.4   Draw a geometric representation of each definite integral and then evaluate the 
definite integral using the Fundamental Theorem of Calculus. 

a.  
3

2

1

x dx∫     b.  
1

1e

dx
x∫  

Solution    
 
a.  The shaded region in the graph below shows the geometric representation. 
 

 

Use the Fundamental Theorem of Calculus to find the value of the definite integral.  

33
2 3 3 3

11

1 1 1 1 26
(3 ) (1 ) 9

3 3 3 3 3
x dx x = = − = − =∫    

b.  The shaded region in the graph below shows the geometric representation. 
 

 

Use the Fundamental Theorem of Calculus to find the value of the definite integral.  

]1
1

1
ln ln ln1 1 0 1

e
edx x e

x
= = − = − =∫  

Ä 

U 



70     CHAPTER 9   DEFINITE INTEGRALS 

ACOW Group  2/27/2003 

–3  –1 
x 

 2 

  1 

 –1  

 3 

–5 

y 

( ) 3f x x= +  

( ) 3f x x= − −

R1 
R2 

x 
3 2 –1  1 

3 

 1 

 –1  

 

Example 9.5   Graph ( ) 3f x x= +  and use the graph to find 

0

5

3x dx
−

+∫ . 

 
Solution   The graph of ( ) 3f x x= +  is shown below.  
 

 

To find 
0

5

3x dx
−

+∫ , we need to write an integral that represents R1 and another to represent R2. This is 

necessary because R1 and R2  are bounded by different functions.   

3 00 3 0
2 2

5 35 5 3

1 13 3 3 3 3 2 4.5 6.5
2 2

x dx x dx x dx x x x x
−−

− −− − −

 + = − − + + = − − + + = + =  ∫ ∫ ∫  ³ 

All of the integrals we have considered thus far have been positive.  That is the graphs of the functions 
lied strictly above the x – axis.  The next example demonstrates what happens when a shaded region lies 
strictly below the x – axis. 
 
  Example 9.6   Draw a geometric representation of  

3
2

1

( 4 3)x x dx− +∫ then evaluate the definite integral using the Fundamental Theorem of Calculus. 

Solution   The shaded region in the graph below shows the geometric representation. 
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Region 1 

Region 2 

33
2 3 2 3 2 3 2

11

1 1 1( 4 3) 2 3 (3) 2(3) 3(3) (1) 2(1) 3(1)
3 3 3

1 4(9 18 9) 2 3
3 3

x x dx x x x    − + = − + = − + − − +       

 = − + − − + = − 
 

∫
 

This definite integral is negative because the shaded area lies below the x-axis.  ³ 
 
When a definite integral represents a portion of the graph that lies above as well as below the x-axis we 
can calculate two types of areas, gross area and net area.  The gross area is the total amount of area that 
lies between the curve and the x-axis while the net area calculates how much more area lies above or 
below x-axis.  Figure 9.7 shows the different values of the net area. 
 
 
Figure 9.??   Net Area. 
 
   

Net area is positive because more 
area lies above the x-axis. 

Net area is negative because more 
area lies below the x-axis 

Net area is zero because the area 
above and below the x-axis is the 
same. 

 
Example 9.7   Draw a geometric representation of  

3
2

0

( 4 3)x x dx− +∫  and then calculate the net and gross areas. 

 
Solution   The shaded region in the graph below shows the geometric representation. 
 

 

 

‘ 
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x 
b a 

)(xg  

)(xf  

To find the gross area we need to evaluate the integral that represents each shaded region.  

11
2 3 2

1
00

1 1 4
Region ( 4 3) 2 3 2 3 0

3 3 3
x x dx x x x  = − + = − + = − + − =   ∫  

In Example 9.6, we found the area of region 2 to be 4
3− .  Therefore the gross area is 

1 3
2 2

1 2
0 1

Area of Region Area of Region ( 4 3) ( 4 3)

4 4 4 4 8
3 3 3 3 3

x x dx x x dx+ = − + + − +

= + − = + =

∫ ∫
 

The net area is just the sum of the two integrals, 

3 1 3
2 2 2

0 0 1

4 4
( 4 3) ( 4 3) ( 4 3) 0

3 3
x x dx x x dx x x dx  − + = − + + − + = + − = 

 ∫ ∫ ∫ . 

Since the net area is zero, we know there is the same amount of area above the x-axis as there is below the 
x-axis.  Notice that calculating the function over the entire interval is another method of obtaining net 
area. 

9.3 Area Between Two Curves 
Suppose we are to find the area of the shaded region shown in Figure 9.??. 
 
Figure 9.??   The area between f(x) and g(x). 
 

 

 
The area under ( )f x  on [ , ]a b  is shown in Figure 9.?? (a) and the area under ( )g x  on [ , ]a b  is shown 
in Figure 9.?? (b).  If the area under ( )g x  is  taken away from the area under ( )f x  we obtain the area in 
Figure 9.?? (c) which is the area we were trying to find in Figure 9.??. 
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x 
b a 

)(xf  

x 
b a 

)(xg  

x 
b a 

)(xf  

x 
2 –1  1 

 3 

  1 

 –1  

 5 
1)( 2 += xxf  

xxg =)(  

Figure 9.??   Area Between Two Curves 
 
   

area under ( )f x  on [ , ]a b  area under ( )g x  on [ , ]a b  area under ( )f x  with area under 
( )g x  taken away 

 
Thus, we can find the area between two curves if we find the area under the top curve and subtract off the 
area under the bottom curve.  
 

Area Between Two Curves 
On the closed interval [ , ]a b , the area between two continuous functions f(x)  and g(x),  where  

( ) ( )f x g x≥ , is given by 

[ ( ) ( )]
b

a

f x g x dx−∫  

The area between two curves can be remembered as (top function - bottom function)
b

a

dx∫  

 
Example 9.8   Find the area between 2( ) 1f x x= +  and ( )g x x=  on [0, 2]. 
 
Solution   First lets graph both functions over [0 2]. 
 

 

 
Since ( )f x  is the top function and ( )g x  is the bottom function, the definite integral, and thus the area 
between the two curves is 

( )
22 2

2 2 3 2 3 2

00 0

1 1 1 1 8 8( 1) 1 (2) (2) 2 0 2 2
3 2 3 2 3 3

x x dx x x dx x x x + − = − + = − + = − + − = − + =  ∫ ∫  
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)(xg  

x 

)(xf  

a b 

x 
3 –2  1 

  -2 

2 

822 −−= xxy  

6 

  -6 

5 

32 −= xy  
(5, 7) 

(–1, –5) 

Sometimes the two given curves will intersect at one or more points, thus forming an area bounded by the 
curves as shown in Figure 9.??. 
 
Figure 9.??    
 

 

 
To find the area bounded by two curves we need to find the limits of integration.  We do this by locating 
the points where the curves intersect.  The definite integral for Figure 9.10 is represented by 

[ ]( ) ( )
b

a

f x g x dx−∫  

Example 9.9   Find the area of the region bounded by 2 2 8y x x= − −  and 2 8y x= − . 
 
Solution   First, we need to graph the two functions on the same coordinate plane. 
 

 

 
From the graph we notice that 2 3y x= − is the top function and 2 2 8y x x= − − is the bottom function.  In 
addition, the points of intersection show that the lower limit of integration is x = –1 and the upper limit of 
integration is x = 5.  Thus, the definite integral is 
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x 
4 –2  2 

  -2 

2 

2 

  -6 

( )g x  

-4 

( )f x  
(3, 3) 

(–3, –3) 

R1 

R2 

5 5 5
2 2 2

1 1 1

5
3 2

1

(2 3) ( 2 8) 2 3 2 8 4 5

1 1 12 5 (125) 2(25) 5(5) ( 1) 2(1) 5( 1)
3 3 3

100 8 108
36

3 3 3

x x x dx x x x dx x x dx

x x x

− − −

−

− − − − = − − + + = − + +

  = − + + = − + + − − − + + −    

= + = =

∫ ∫ ∫

 

 
Example 9.10   Find the area of the region bounded by ( )f x x=  and 3( ) 8g x x x= − . 
 
Solution   First, we need to graph the two functions on the same coordinate plane. 
 

 

 
There are two bounded regions (R1 and R2) produced by these curves.  Notice that the top function of R1 is 
g(x) and the top function of R2 is f(x).  Consequently we will need to set up an integral to find the area of 
R1, another integral to find the area of R2, and then add the results. 

0
3

1
3

0
3

3

0
4 2

3

( 8 )

( 9 )

1 9
4 2

1 9
0 (81) (9)

4 2
81 20.25
4

R x x x dx

x x dx

x x

−

−

−

= − −

= −

= − 

 = − −  

= =

∫

∫

    

3
3

2
0

3
3

0

3
4 2

0

( 8 )

( 9 )

1 9
4 2

1 9(81) (9)
4 2
81 20.25
4

R x x x dx

x x dx

x x

= − −

= −

= − 

= −

= =

∫

∫

 

Now adding the two results together we get 

1 2 20.25 20.25 40.5R R+ = + =  
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)(xs  

x 
)(xd  

p Consumers’ 
Surplus 

x0 

p0 

)(xs  

x 
)(xd  

p 

Producers’ 
Surplus 

x0 

p0 

9.4 Applications of Definite Integrals 

Consumers’ and Producers’ Surplus 

Suppose you worked all summer and put away $800 to buy a new stereo system for your dorm room.  
When you went shopping to buy the stereo system you found exactly what you wanted for only $650.  
Thus, we could say that you “saved” $150.  If we could find all the consumers who were willing to pay 
over $650 for this stereo system and calculate the total savings of all consumers, we will have found the 
consumers’ surplus. Figure 9.11(a) shows the graph of a supply curve, ( )p s x= , and a demand curve, 

( )p d x= . The dotted lines represents the equilibrium price, 0p , and the equilibrium quantity 0x ,. The 
area above the dotted line, but below ( )d x , would represent the consumers’ surplus.   
 
Figure 9.?? 
 

  

 
Now lets say you are the producer of the stereo systems and are willing to supply the stereos for $500.  If, 
however, you end up selling the stereos for $650, you have “gained” $150.  The total amount gained over 
all possible prices is the producers’ surplus.  Figure 9.11 also shows the graph of the producers’ surplus. 
 
If ( )p d x= is the demand equation, ( )p s x=  the supply equation, and 0 0( , )x p is the equilibrium point 
then the consumers’ surplus is given by 

( )
0

0
0

( )
x

d x p dx−∫  

the producers’ surplus is given by  

( )
0

0
0

( )
x

p s x dx−∫
 

 
Example 9.11   A company has determined that its supply and demand equations can be modeled by 

21
2( ) 7p d x x= = − +  and 2( ) 1p s x x= = + where x represents the number of units supplied each week 

and p is the selling price (in hundreds of dollars) for each unit.  Find the consumers’ and producers’ 
surplus. 
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x 
3 –1  1 

 6 

  2 

 –1  

 10 

( )d x  

( )s x  

5 

(2, 5) 

p 

x 
3 –1  1 

 6 

  2 

 –1  

 10 

( )d x  

( )s x  

5 

(2, 5) 

p 

Solution   First we need to graph the supply and demand functions and find the equilibrium point.  
The equilibrium point is found by setting ( ) ( ).d x p x=  
 

 

 

2 2

2

2

2

( ) ( )

1 7 1
2

36
2

12 3

4
2

d x s x

x x

x

x

x
x

=

− + = +

=

=

=
=

 

The consumers’ surplus is  
 

 

22 2
2 2 3

00 0

1 1 1 1 4 8
7 5 2 2 (8) 2(2) 4

2 2 6 6 3 3
x dx x dx x x    − + − = − + = − + = − + = − + =        ∫ ∫  

So the consumers’ “saved” approximately $266.67 per week when the selling price was $500. 
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x 
3 –1  1 

 6 

  2 

 –1  

 10 

( )d x  

( )s x  

5 

(2, 5) 

p 

 6 

  2 

 10 

x 
1 –3 -1 3 

p 

The producers’ surplus is 
 

 

 

( )
22 2

2 2 3

00 0

1 1 8 16
5 ( 1) ( 4) 4 (8) 4(2) 8

3 3 3 3
x dx x dx x x− + = − + = − + = − + = − + =∫ ∫  

So the producers’ “saved”  approximately $533.33 per week when the selling price was $500. ³ 

Sample Quiz 
Question 9.1  Find an approximation for the area under 2( ) 2 2f x x= − +  on [ 1,0]−  using 4 left endpoint 
rectangles and 4 right endpoint rectangles.  Which is an overestimate and which is an underestimate? 
 
Question 9.2  Write a definite integral that represents the shaded area for the function graphed below. 
 

    2

8
( 1)

f
x

=
+

 

Question 9.3  Evaluate 
2

2

2

4x dx
−

− +∫ . 

Question 9.4  Draw a graph of ( ) 2f x x= −  and then find 
4

1

2x dx
−

−∫ . 

Question 9.5  Evaluate 
2

3 2

1

4x x dx
−

− −∫ . 
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Question 9.6  Calculate the net and gross areas of 
8

2

1

10 21x x dx− +∫ . 

Question 9.7  Find the area between ( ) 0.5 1f x x= +  and 2( ) 4 9g x x x= − +  on [ ]3, 6 . 

Question 9.8   Find area bounded by 2( ) 4 2f x x x= + +  and ( ) 4 6g x x= + . 

Question 9.9   Find the area bounded by 3( ) 8.5f x x x= −  and ( ) 0.5g x x= . 

Question 9.10  A company has determined its demand equation can be modeled by 
2( ) 0.25 80p d x x= = − + and its supply equation can be modeled by ( ) 3.5 20p s x x= = +  where x is the 

number of units sold per day and p is the selling price in hundreds of dollars.  Find the consumers’ and 
producers’ surplus. 
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Chapter 10   Multi-Variable Applications 

10.1  Multi-Variable Functions and Their Graphs 

10.2  Level Curves and Contour Maps 

10.3  Partial Derivatives 

10.4  Extrema and Saddle Points 

Sample Quiz 
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Appendix A – Applets 

Appendix B – Trigonometry 

Answers to Sample Quizzes 

Answers to Odd Exercises 
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