Skip to content

Colloquium - Fritz Gesztesy

Date: November 16, 2017

Time: 4:00PM - 5:00PM

Location: BLOC 117

Speaker: Fritz Gesztesy, Baylor University, Mathematics Department



Title: Eigenvalue counting for Krein-von Neumann extensions of elliptic operators

Abstract: We start by providing a historical introduction into the subject of Weyl-asymptotics for Laplacians on bounded domains in n-dimensional Euclidean space, and a brief introduction into the basic principles of self-adjoint extensions.

Subsequently, we turn to bounds on eigenvalue counting functions and derive such a bound for Krein-von Neumann extensions corresponding to a class of uniformly elliptic second order PDE operators (and their positive integer powers) on arbitrary open, bounded, n-dimensional subsets Omega in R^n. (No assumptions on the boundary of Omega are made; the coefficients are supposed to satisfy certain regularity conditions.)

Our technique relies on variational considerations exploiting the fundamental link between the Krein-von Neumann extension and an underlying abstract buckling problem, and on the distorted Fourier transform defined in terms of the eigenfunction transform of the corresponding differential operator suitably extended to all of R^n. We also consider the analogous bound for the eigenvalue counting function for the corresponding Friedrichs extension.

This is based on joint work with M. Ashbaugh, A. Laptev, M. Mitrea, and S. Sukhtaiev.