Wavelet Sets in **R**² Bill Finkenkeller, Texas A&M University Chelsea Kaihoi, Iowa State University

A subset E of **R** is a wavelet set if and only if $\{E+2\pi^*n | n \text{ an integer}\}\$ is a measurable partition of **R** and $\{2^{n}(n)E | n \text{ an integer}\}\$ is a 2-dilation "tiler" of **R** (modulo Lebesgue null sets). This can be generalized to **R**² (using the matrix 2I as the dilation factor and $2\pi(l,m)$, where l and m are integers, for the translation component). We will show a few examples of connected wavelet sets in **R**² as well as explore the existence of wavelet sets in **R**² which are composed of a finite number of rectangles.