Extremal Questions for Tetranomials

Joel Gomez, North Carolina State University
Andrew Niles, University of Rochester

Abstract

: We present the first known examples of 2×2 fewnomial systems of type $(3,4)$ with 7 roots in the positive quadrant. It is easy to construct such systems with 6 roots in the positive quadrant, and Li, Rojas, and Wang have shown that these systems can never have more than 14 roots in the positive quadrant. Kushnirenko's Conjecture suggested that 2 x 2 fewnomial systems of type $(3, \mathrm{~m})(m>2)$ could have no more than $2 \mathrm{~m}-2$ roots in the positive quadrant. While a counterexample to this conjecture with 5 roots was found by Haas for $\mathrm{m}=3$, no counterexamples have previously been found for greater values of m . We also present an inductive construction for 2×2 fewnomial systems of type (3,m) with $2 \mathrm{~m}-1$ roots in the positive quadrant. This disproves Kushnirenko's Conjecture for all systems of type $(3, m)$ for $m>2$.

