"The Cross-Over and Patch Algorithms for Wavelet Sets in R²"

by

A.J. Hergenroeder, Zach Catlin and Brandon George

Abstract: We have two algorithms to generate classes of wavelet sets in R^2: The crossover algorithm and the patch algorithm.

Using any partition of the inner square, $\begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix} \times \begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix}$, into four pieces $X_{\oplus}, X_{\ominus}, Y_{\oplus}, Y_{\ominus} \subseteq \begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix} \times \begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix}$ such that X_{\oplus} is in the right half-inner square, X_{\ominus} is in the left half-inner square, Y_{\oplus} is in the upper half-inner square and Y_{\ominus} is in the lower half-inner square, our crossover algorithm generates a wavelet set in \mathbb{R}^2 . We have results for the patch wavelet model as well.