Theorem 1. Let $B \subset M_{k}(\mathbb{C})$ be a semi-simple algebra. If B has property P_{1}, then $\operatorname{dim} B \leq k$. Furthermore, if $\operatorname{dim} B=k$, then B is a maximal P_{1} algebra.

Our primary goal is to prove this theorem. A maximal P_{1} algebra is an algebra B with property P_{1} such that any algebra $A, B \subsetneq A, A$ does not have property P_{1}. To prove this theorem, we will need a few lemmas first to assist us.

Lemma 1. Let $B \subset M_{k}(\mathbb{C})$ be a semi-simple algebra. If B has property P_{1}, then $\operatorname{dim} B \leq k$.

Proof. We will use induction on k. The case $k=1$ is clear. Suppose this is true for $k \leq n$ and let $B \subset M_{n+1}(\mathbb{C})$ be a semi-simple algebra. We need to show $\operatorname{dim} B \leq n+1$. Suppose B has a non-trivial central projection, $p, 0<p<1$. Then, $B=p B p \oplus(1-p) B(1-p)$. From this, we can see $p B p \subset B(p H)$ and $(1-p) B(1-p) \subset B\left((1-p) H\right.$ are both semi-simple algebras with property P_{1}, as proven earlier. By the assumption of induction $\operatorname{dimp} B p \leq \operatorname{dim}(p H)$ and $\operatorname{dim}(1-p) B(1-p) \leq \operatorname{dim}(1-p) H$. Therefore, $\operatorname{dim} B=\operatorname{dim}(p B p)+\operatorname{dim}((1-$ p) $B(1-p)) \leq \operatorname{dimp} H+\operatorname{dim}(1-p) H=\operatorname{dim} H=n+1$.

Now, let's assume B does not have a nontrivial central projection. Then, $B=M_{r}(\mathbb{C}) \subset M_{n+1}(\mathbb{C})$. Since B has $P_{1}, r^{2} \leq n+1$, so $r \leq n+1$.

Lemma 2. Let $B \subset M_{4}(\mathbb{C})$. If $B=M_{2}(C)$, then B is a maximal P_{1} algebra.

Lemma 3. Suppose $0 \neq a \in M_{n}(\mathbb{C})$. Then, for any $a \in A$, there exists finite elements $b_{1}, b_{2} \ldots b_{k}, c_{1}, c_{2}, \ldots c_{k}$, such that $\sum_{i=1}^{k} b_{i} a c_{i}=I_{n}$.

Proof. Note that $M_{n}(\mathbb{C}) a M_{n}(\mathbb{C})$ is a two sided ideal of $M_{n}(\mathbb{C})$ and $M_{n}(\mathbb{C}) a M_{n}(\mathbb{C}) \neq$ 0 . So, $M_{n}(\mathbb{C}) a M_{n}(\mathbb{C})=M_{n}(\mathbb{C})$, this implies the lemma.

The following well known lemma will be very helpful.

Lemma 4. There are finitely many unitary matrices, $u_{1}, u_{2}, \ldots . u_{k} \in M_{n}(\mathbb{C})$, such that $\frac{1}{k} \sum_{i=1}^{k} u_{i} a u_{i}^{*}=\frac{\operatorname{Tr}(a)}{n} I_{n}$ for all $a \in M_{n}(\mathbb{C})$.

Lemma 5. Let $b \subset M_{n^{2}}(\mathbb{C})$. If $B=M_{n}(\mathbb{C})$, then B is a maximal P_{1} algebral.
We may write $M_{n^{2}}(\mathbb{C})=M_{n}(\mathbb{C}) \otimes M_{n}(\mathbb{C})$ and assume $B=M_{n}(\mathbb{C}) \otimes I_{n}$. Since B has a separating vector, B has property P_{1}.

Now, assume $B \subsetneq R \subseteq M_{n^{2}}(\mathbb{C})$ and R is a P_{1} algebra. We can write $R=R_{1}+J$, such that $B \subseteq R_{1}$, where R_{1} is the semi-simple part and J is the radical of R. Since R has P_{1}, R_{1} has P_{1}, and by Lemma 1 , $\operatorname{dim} R_{1} \leq n^{2}$. Since $\operatorname{dim} B=n^{2}$, we have $R_{1}=B$.

Suppose $0 \neq x=\left(x_{i j}\right)_{1 \leq i, j \leq n} \in J$ with respect to the matrix units $I_{n} \otimes$ $M_{n}(\mathbb{C})$. Note that with respect to the matrix units of $I_{n} \otimes M_{n}(\mathbb{C})$, each element of $B=M_{n}(\mathbb{C}) \otimes I_{n}$ has the following form $\left(\begin{array}{cccc}a & \dot{a} & 0 \\ 0 & . . & 0 \\ \vdots & & & \\ 0 & 0 & \ldots & a\end{array}\right)$, $a \in M_{n}(\mathbb{C})$. Without loss of generality, let's assume $x_{11} \neq 0$.

By Lemma 3 , there exists a finite elemtns $b_{1}, \ldots b_{k}, c_{1}, \ldots c_{k} \in M_{n}(\mathbb{C})$, such that
$\sum_{i=1}^{k} b_{i} x_{11} c_{i}=I_{n}$.

Let $y=\left(y_{i j}\right)_{1 \leq i, j \leq n}=\sum_{i=1}^{k}\left(b_{i} \otimes I_{n}\right) X\left(c_{i} \otimes I_{n}\right) \in J$. By (1), we have $y_{11}=I_{n}$. Next, we can choose unitary matrices $u_{1}, \ldots u_{k}$ as in Lemma 4. Let $z=\left(z_{i j}\right)=$ $\sum_{i=1}^{k}\left(u_{i} \otimes I_{n}\right) Y\left(u_{i}^{*} \otimes I_{n}\right) \in J$. Then, $z_{11}=I_{n}$ and $z_{i j}=\lambda_{i j} I_{n}$ for some $\lambda_{i j} \in \mathbb{C}, 1 \leq i, j \leq n$. So, $Z \in I_{n} \otimes M_{n}(\mathbb{C})$.

Since $z \in J, z^{n}=0$, as elements in the radical are nilpotent. By the Jordan Canonical theorem, there exists an invertible matrix $w \in I_{n} \otimes M_{n}(\mathbb{C})$ such that $0 \neq w z w^{-1}=\oplus_{i=1}^{k} z_{i} \in I_{n} \otimes M_{n}(\mathbb{C})$ and each z_{i} is a Jordan block with diagonal 0 . By replacing R with $w R w^{-1}$, we may assume $0 \neq z=\oplus_{i=1}^{k} z_{i} \in I_{n} \otimes M_{n}(\mathbb{C})$.

Suppose $r=\max \left\{\operatorname{rank} z_{i}: 1 \leq i, \leq k\right\}$. We may assume $\operatorname{rank} z_{1}=\ldots=$ rank $z_{s}=r$ and rank $z_{i}<r$ for all $s<i \leq k$. Then $z^{r-1}=\left(\oplus_{i=1}^{s} z^{r-1}\right) \oplus 0$. Note that $z^{r-1}=\left(\begin{array}{cccc}0 & \ldots & 0 & 1 \\ 0 & \ldots & 0 & 0 \\ \vdots & & \\ 0 & \ldots & 0 & 0\end{array}\right)$. We may assume R is the algebra generated by $M_{n}(\mathbb{C}) \otimes I_{n}$ and $I_{n} \otimes z^{r-1}$.

Without loss of generality, we assume $r=2$, and hence $s=\frac{n}{2}$. The general case can be proved similarly. Let $t=\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right), a, b \in M_{n}(\mathbb{C})$. Then, $R=\left\{\left(\begin{array}{ccc}t & 0 & \ldots \\ 0 & t & 0\end{array}\right) . \begin{array}{l}0 \\ \vdots \\ \\ 0\end{array}\right]$. that $R_{\perp}=\left\{\left(\begin{array}{cccc}t_{1} & & & \\ & t_{2} & & \\ & & \ddots & \\ & & & t_{\frac{n}{2}}\end{array}\right)\right\}$. Let $\left.m=\left(\begin{array}{ccc}0 & 0 \\ I_{n} & 0\end{array}\right)\right)$. Since this has P_{1}, we should be able to write $\left(\begin{array}{llll}m & & & \\ & & & \\ & & & \\ & & \ddots & \\ & & & \\ & \end{array}\right)$ plus an element of the preannihilator as a rank-1 matrix. However, if this is so, then we know $1+y_{1}, 1+y_{2} \ldots 1+y_{s}$ are all rank-1. However, summing all of these gives $I_{n}+y_{1}+I_{n}+y_{2}+\ldots . I_{n}+y_{s}=s * I_{n}$ which is rank at most $s=\frac{n}{2}<n$. This is a contradiction.

Lemma 6. Suppose $\lambda \neq 0 \in \mathbb{C}$ and $y_{1}, y_{2}, \ldots, y_{2} \in M_{n}(\mathbb{C})$ such that $y_{1}+$ $y_{2}+\ldots+y_{n}=0$. Suppose $\eta_{1}, \eta_{2}, \ldots, \eta_{n} \in \mathbb{C}^{n}$ are linearly dependent. Let $t=\left(\begin{array}{cccccc}\lambda & * & \cdot & \cdot & \cdot & * \\ \eta_{1} & I_{n}+y_{1} & * & \cdot & \cdot & * \\ \eta_{2} & * & I_{n}+y_{2} & * & \ldots & * \\ \cdot & & & & & \\ \cdot & & & & & \\ \cdot & & & & & \\ \eta_{n} & * & \ldots & * & * & I_{n}+y_{n}\end{array}\right)$. This matrix has rank i 1.
Proof. Note first that each η_{i} block is an $n \times 1$ column vector. Since we are saying they are linearly dependent, then we know that there are k vectors in the set $\left\{\eta_{i}\right\}_{i=1}^{k}$ that are independent. Without loss of generality, assume that the first k vectors are the linearly independent ones. Then, for any $j>k, \eta_{j}$ can be
written as a linear combination of the first k elements. Another way of viewing this is saying that if we look at the matrix $\left[\eta_{1} \eta_{2} \ldots \eta_{n}\right]$, for any $j>k$, the j-th row can be written as a linear combination of the first k rows. So, in our matrix t, let's assume it has rank one. On each η_{i} 's j-th row, we can row reduce them to zero. To maintain rank-1, since we have the nonzero-entry in the top left, we have to have the entire row containing a j-th entry has to be zero. Doing this row reduction changes our y_{i} to a y_{i}^{\prime} such that $I_{n}+y_{i}^{\prime}$ has zero entries along it's row that it shares with the j-th entries of each η_{i}. However, we still maintain the condition that $\sum_{i=1}^{n} y_{i}^{\prime}=0$. These rows that contain these j row entries occur in the $k * j+1$ row where $1 \leq k \leq n$. So, since we know all these rows have to be zero, we know something about the $1+y_{i}$'s $i * j+1$ entry. We know it has to be zero now. So, we can sum up each of those new 0 entries from each $1+y_{i}^{\prime}$. Doing this sum only over the position that it shares with the j-th row of each η_{i} gives $0=\sum_{i=1}^{n} 1+y_{i}^{\prime}=\sum_{i=1}^{n} 1+\sum_{i=1}^{n} y_{i}^{\prime}=\sum_{i=1}^{n} 1=n$. However, that gives us $n=0$, which is impossible, hence contradicting our claim that this is rank-1.

Lemma 7. Let $B=\subset M_{5}(\mathbb{C})=B(H)$ such that $\operatorname{dim} H=5$ and $B=\left\{\left(\begin{array}{lll}\lambda & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right), \lambda \in \mathbb{C}, a \in M_{2}(\mathbb{C})\right\}$ Then, B is a maximal P_{1} algebra.

Proof. Since B has a separating vector, B has property P_{1}. Suppose $B \subset R \subseteq$ $M_{5}(\mathbb{C})$ and R is a P_{1} algebra. We can write $R=R_{1}+J$, such that $B \subseteq R_{1}$, where R_{1} is the semi-simple part and J is the radical part. By Lemma 1, $B=R_{1}$. Let $0 \neq X \in J$ and let $p=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ and $q=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & I_{2} & 0_{2} \\ 0 & 0_{2} & I_{2}\end{array}\right)$. Then $q B q \subseteq q R q \subset B(P H)=M_{4}(\mathbb{C})$. By Lemma $3, q B q=q R q$. This implies we
may assume $0 \neq x=\left(\begin{array}{ccc}0 & \xi^{T} & \eta^{T} \\ 0 & 0_{2} & 0_{2} \\ 0 & 0_{2} & 0_{2}\end{array}\right)$, where $\xi, \eta \in \mathbb{C}^{2}$.
Case 1: ξ and η are linearly independent. Then, $x\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right) \in R$. Since ξ and η are linearly independent, and $a \in M_{2}(\mathbb{C})$ is arbitrary, this implies that $R=\left\{\left(\begin{array}{ccc}\lambda & \xi^{T} & \eta^{T} \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right) \lambda \in \mathbb{C}, \xi, \eta \in \mathbb{C}^{2}, a \in M_{2}(\mathbb{C})\right\}$. Simple computations show that $R_{\perp}=\left\{\left(\begin{array}{lll}0 & * & * \\ 0 & y_{1} & * \\ 0 & * & y_{2}\end{array}\right) y_{1}, y_{2} \in M_{2}(\mathbb{C}), y_{1}+y_{2}=0\right\}$ Since we assume R has property $P_{1}, I_{5}+R_{\perp}$ is rank- 1 for some matrix in R_{\perp}. This gives us a matrix of the form $R_{\perp}=\left(\begin{array}{ccc}1 & * & * \\ 0 & y_{1}+I_{2} & * \\ 0 & * & y_{2}+I_{2}\end{array}\right)$. However, this contradicts Lemma 7 .

Case 2: ξ and η are linearly dependent. Without loss of generality, assume $\eta=t \xi$, so $x=\left(\begin{array}{ccc}0 & \xi^{T} & t \xi^{T} \\ 0 & 0_{2} & 0_{2} \\ 0 & 0_{2} & 0_{2}\end{array}\right)$ and $x\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right)=\left(\begin{array}{ccc}0 & \xi^{T} & t \xi^{T} \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right)$. Since $\xi \neq 0$, and $a \in$ $M_{2}(\mathbb{C})$ is arbitrary, this implies that $R=\left\{\left(\begin{array}{ccc}\lambda & \xi^{T} & t \xi^{T} \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right) \lambda \in \mathbb{C}, \xi \in \mathbb{C}^{2}, a \in M_{2}(\mathbb{C})\right\}$. Simple computations show that
$R_{\perp}=\left\{\left(\begin{array}{ccc}0 & 0 & 0 \\ \eta_{1} & y_{1} & * \\ \eta_{2} & * & y_{2}\end{array}\right) y_{1}, y_{2} \in M_{2}(\mathbb{C}), y_{1}+y_{2}=0, \eta_{1}, \eta_{2} \in \mathbb{C}^{2}, \eta_{1}+\eta_{2}=0\right\}$

If this space has P_{1}, then $I_{5}+R_{\perp}$ should be rank-1 for some element of R_{\perp}. However, this gives us matrices of the form $R_{\perp}=\left(\begin{array}{ccc}1 & * & * \\ n_{1} & * \\ \eta_{2} & * & y_{2}+I_{2} \\ \hline\end{array}\right)$, which contradicts lemma 7.

Lemma 8. Suppose $z_{i j} \subseteq M_{s r}(\mathbb{C})$ and $\left\{c_{j i}\right\} \subseteq M_{r s}(\mathbb{C})$ such that $\sum_{i=1}^{s} \sum_{j=1}^{r} z_{i j} a c_{j i} b=$
$0, \forall a \in M_{r}(\mathbb{C}), b \in M_{s}(\mathbb{C})$. If $c_{j i} \neq 0$ for some $1 \leq i \leq s, 1 \leq j \leq r$, then $z_{i j}$ are linearly dependent.

Proof. We may assume $c_{11} \neq 0$ and the $(1,1)$ entry of c_{11} is not zero. Replace $c_{j i}$ by $\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ \vdots & & & \\ 0 & \ldots & & 0\end{array}\right) c_{j i}\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ \vdots & & & \\ 0 & \ldots & & 0\end{array}\right)$, we may assume $c_{j i}=\lambda_{i j}\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ \vdots & & & \\ 0 & \ldots & & 0\end{array}\right), \lambda_{11}=1$.

Let $x_{i j}^{k}$ be the k-th column of $z_{i j}$.Note that $z_{i j}\left(\begin{array}{cccc}1 & 0 & \ldots & \ldots \\ 0 & 0 & \ldots & 0 \\ \vdots & & 0 \\ 0 & \ldots & \\ 0\end{array}\right)=x_{i j}^{1}$. Then, $\sum_{i=1}^{s} \sum_{j=1}^{r} z_{i j} c_{j i}=0$ implies $\sum_{i=1}^{s} \sum_{j=1}^{r} \lambda_{i j} z_{i j}\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ \vdots & & \\ 0 & \ldots & & 0\end{array}\right)=0$ which implies $\sum_{i=1}^{s} \sum_{j=1}^{r} \lambda_{i j} x_{i j}^{1}=0$

Similarly, we can use $\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ \vdots & & \\ 0 & \ldots & \\ 0\end{array}\right) c_{j i}=\lambda_{i j}\left(\begin{array}{cccc}0 & 0 & \ldots & 0 \\ 1 & 0 & \ldots & 0 \\ \vdots & & \\ 0 & \ldots & \\ 0\end{array}\right)$ show $\sum_{i=1}^{s} \sum_{j=1}^{r} \lambda_{i j} x_{i j}^{2}=$
0. Proceeding similarly, we obtain $\sum_{i=1}^{s} \sum_{j=1}^{r} \lambda_{i j} x_{i j}^{k}=0$ for all $1 \leq k \leq r$.

Therefore, $\sum_{i=1}^{s} \sum_{j=1}^{r} \lambda_{i j} z_{j i}=0$ which shows the $z_{j i}$ are linearly dependent.

Lemma 9. Let $B \subseteq M_{r^{2}+s^{2}}(\mathbb{C})=B(H)$ such that $\operatorname{dim} H=\left(r^{2}+s^{2}\right)^{2}$ and $B=\left\{a^{(r)} \oplus b^{(s)}: a \in M_{r}(\mathbb{C}), b \in M_{s}(\mathbb{C})\right\}$. Then, B is a maximal P_{1} algebra.

Proof. Since B has a separating vector, B has property P_{1}. Suppose $B \subsetneq R \subseteq$ $M_{r^{2}+s^{2}}(\mathbb{C})$ such that R has P_{1}. Write $R=R_{1}+J$ such that $B \subseteq R_{1}$, where R_{1} is the semi-simple part and J is the radical part. . By Lemma $1, B=R_{1}$. Let $0 \neq X \in J$ and let $p=I_{r}^{(r)} \oplus 0$ and $q=p=I_{s}(s) \oplus 0$. Then, $p B p \subseteq p R p \subseteq B(p H)$ and $p R p$ has property P_{1}. By Lemma $5, p R p=p B p$. Similarly, $q R q=q B q$. This implies we may assume $0 \neq x=\left(\begin{array}{cc}0_{r}^{(r)} & C \\ 0 & 0_{s}^{(s)}\end{array}\right), C \neq 0$. If $Z \in R_{\perp}$ such that

Then $x_{1}+x_{2}+\ldots+x_{r}=0_{r}$ and $y_{1}+y_{2}+\ldots y_{s}=0_{s}$. Note that $x\left(a^{(r)} \oplus b^{(s)}=\right.$ $\left(\begin{array}{cc}0_{r}^{(r)} & c b^{(s)} \\ 0 & 0_{s}^{(s)}\end{array}\right)$. Write $c=\left(c_{i j}\right)_{1 \leq i \leq r, 1 \leq j \leq s}$. Therefore, we have
$\operatorname{Tr}\left(\left(\begin{array}{ccc}z_{11} & \ldots & z_{1} r \\ \vdots & & \\ z_{s 1} & \ldots & z_{s r}\end{array}\right)\left(\begin{array}{ccc}c_{11} & \ldots & c_{1 s} \\ \vdots & & \\ c_{r 1} & \ldots & c_{r s}\end{array}\right)\left(\begin{array}{cll}b & & \\ & \ddots & \\ & & \end{array}\right)\right)=0$
Simple computation shows that $\operatorname{Tr}\left(\sum_{i=1}^{s} \sum_{j=1}^{r} z_{i j} c_{j i} b\right)=0$. Since $b \in$ $M_{s}(\mathbb{C})$ is arbitrary $\left(\sum_{i=1}^{s} \sum_{j=1}^{r} z_{i j} c_{j i}\right)=0$.

Note that

$$
\left(a^{(r)} \oplus 0\right) x\left(0 \oplus b^{(s)}\right)=\left(\begin{array}{cc}
0_{r}^{(r)} & a^{(r)} c b^{(s)} \\
0 & 0_{s}^{(s)}
\end{array}\right)=\left(\begin{array}{cc}
0_{r}^{(r)} & \left(a c_{i j} b\right)_{1 \leq i \leq r, 1 \leq j \leq s} \\
0 & 0_{s}^{(s)}
\end{array}\right)
$$

So, we have $\sum_{i=1}^{s} \sum_{j=1}^{r} z_{i j} a c_{j i} b=0, \quad \forall a \in M_{r}(\mathbb{C}), b \in M_{s}(\mathbb{C})$. By Lemma 8 , this implies that $z_{i j}$ are linearly dependent.

Suppose $I_{r^{2}+s^{2}}+z$ is rank 1 for some $z \in R_{\perp}$. Then $\left(z_{i j}\right)_{1 \leq i \leq r, 1 \leq j \leq s}$ are rank1 matrices. So there are $\xi_{1} \ldots \xi_{s} \in \mathbb{C}^{s}, \eta_{1} \ldots \eta_{r} \in \mathbb{C}^{r}$ such that $z_{i j}=\xi_{i} \otimes \eta_{j}$. Since $\left\{z_{i j}\right\}$ are linearly dependent, either $\left\{\xi_{i}\right\}$ are linearly dependent or $\left\{\eta_{j}\right\}$ are linearly dependent. Without loss of generality, assume $\left\{\xi_{i}\right\}$ are linearly depen-
dent. Now, $I_{r^{2}+s^{2}}+z$ is a matrix of the form $\left(\begin{array}{cccccc}I_{r}+x_{1} & & & & & \\ & & \ddots & & & \\ \xi_{1} \otimes \eta_{1} & \ldots & \xi_{n} \otimes \eta_{1} & I_{s}+y_{1} & & \\ \vdots & & & & & \\ \xi_{s} \otimes \eta_{1} & \ldots & \xi_{s} \otimes \eta_{r} & * & \ldots & I_{s}+y_{s}\end{array}\right)$
Since $x_{1}+\ldots+x_{r}=0$, one entry of $I_{r}+x_{i}$ is not zero for some $1 \leq i \leq r$. We may assume the $(1,1)$ entry of $I_{r}+x_{1}$ is not zero. Let $\eta_{1}=\left(\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{r}\end{array}\right)$. Then the matrix

$$
\left(\begin{array}{ccccc}
I_{r}+x_{1} & & & & \\
& & \ddots & & \\
& & & \\
\alpha_{1} \xi_{1} & \ldots & I_{s}+y_{1} & & \\
\vdots & & & & \\
& & & * & \ldots \\
\alpha_{1} \xi_{s} & \ldots & & I_{s}+y_{s}
\end{array}\right)
$$

By lemma 6, this matrix has rank ≥ 2. This contradicts our assumption.

We are now ready to prove Theorem 1.

Proof. By Lemma 1, if B has P_{1}, then $\operatorname{dim} B \leq k$. Assume B has property P_{1}, and $\operatorname{dim} B=k$. We claim $B=\oplus_{i=1}^{r} M_{\left(n_{i}\right)}^{n_{i}}(\mathbb{C}), k=\sum_{i=1}^{r} n_{i}^{2}$. We will proceed by induction on k. If $k=1$, this is clear. Assume our claim is true for $k \leq n$. Let $B \subseteq M_{n+1}(\mathbb{C})$ be a semi-simple P_{1} algebra and $\operatorname{dim}(B)=n+1$ Suppose B has non trivial central projection $p, 0<p<1$. Then, $B=p B p \oplus(1-p) B(1-p)$. From this we can say $p B p \subseteq B(p H)$ and $(1-p) B(1-p) \subseteq B((1-p) H)$ are both semi-simple with property P_{1}. By Lemma $1 \operatorname{dim}(p B p)=\operatorname{dim}(p H)$ and $\operatorname{dim}((1-p) B(1-p))=\operatorname{dim}((1-p) H)$. By induction, $p B p=\oplus_{i=1}^{r} M_{n_{i}}^{n_{i}}(\mathbb{C})$ and $(1-p) B(1-p)=\oplus M_{n_{i}}^{n_{i}}(\mathbb{C})$.

Suppose B does not have a nontrivial central projection. Then $B=M_{r}(\mathbb{C}) \subseteq$ $M_{n+1}(\mathbb{C})$ and $\operatorname{dim} B=r^{2}=n+1$, so $B=M_{r}(\mathbb{C})^{(r)}$.

Suppose $B \subsetneq R \subseteq M_{k}(\mathbb{C}) \in B(H)$ such that R has property P_{1}. Let
$B=R_{1}$. Let p_{i} be the projection of B that corresponds to the $M_{n_{i}}^{\left(n_{i}\right)}$. Let $0 \neq x \in J$. Then, we have $p_{i} B p_{i} \subseteq p_{i} R p_{i} \subseteq B\left(p_{i} H\right)$ and $p_{i} R p_{i}$ has property P_{1}. By Lemma $5 p_{i} R p_{i}=p_{i} B p_{i}$, this implies we may assume $0 \neq x=$ $\left(\begin{array}{ccccc}0_{n_{1}}^{\left(n_{1}\right)} & * & x_{12} & \ldots & x_{1 n_{i}} \\ 0 & 0_{n_{2}}^{\left(n_{2}\right)} & & & \\ & & \ddots & & \vdots \\ 0 & \ldots & & & 0_{n_{i}}^{\left(n_{i}\right)}\end{array}\right)$

We now assume $x_{12} \neq 0$. Then $\left(p_{1}+p_{2}\right) x\left(p_{1}+p_{2}\right) \subsetneq\left(p_{1}+p_{2}\right) R\left(p_{1}+p_{2}\right)$. But, by our previous lemma, after cutting down by two projections, we have the direct sum of two semi-simple algebras is already maximal P_{1}, which contradicts that R will be maximal P_{1}.

