Structural Properties of Wavelet Sets

Zhiwei Steven Wu

July 22, 2009

Abstract

A wavelet set is defined to be a measurable subset E of \mathbb{R} for which $\frac{1}{\sqrt{2\pi}}\chi_E$ is the fourier transform of a wavelet. In one-dimension, a wavelet set is a 2π -translation and 2-dilation generator of a partition of the real line. We also define a *joint dilation wavelet set* as a wavelet set under dilation by both d_1 and d_2 for $d_1 \neq d_2$. We have proven that a set W is a joint (2) and (-2) dilation wavelet set if and only if $\bigcup_{j\in\mathbb{Z}} 4^j W$ is symmetric. By applying this result to some families of

2-dilation wavelet sets given by David Larson and Xingde Dai in their AMS memoir, we have proven that all of the Journe sets are joint (2) and (-2) dilation wavelet sets. Using the same tool, we can also find all 2-interval and 3-interval joint dilation wavelet sets. A characterization of all 3-interval wavelet sets different from the literature is included for our purpose.

This work was done by the author while participating *Matrix Analysis and Wavelet Theory* REU in Texas A&M University mentored by David Larson. Part of this is work joint with Daniel Poore, another REU participant.