Modeling the Effects of Cannabalistic Behavior in Zebra Mussel (Dreissena polymorpha) Populations

Patrick Davis Eastern Michigan University

Texas A&M REU Program Summer 2010 Ecology Modeling Group

The Biology

Small Freshwater European Bivalve Mollusk
Three Life Stages:

Picture from: http://webhost.bridgew.edu/dpadgett/Course_page.htm

Picture from: http://www.vpr.net/news_detail/86558/

The Issues

Picture from: http://www.invasivespeciesscotland.org.uk/invasive_non_native_species/zebra_m ussel.asp

- Biofouling (unwanted accumulation of a certain population in an ecosystem)
 → increased competition for native species
- Attach to Solid Substrate

 → physical damage to
 artificial structures
 → clog intake valves of
 industrial facilities

The Issues

- Filter Feeding
 - \rightarrow removes large abundances of phytoplankton \rightarrow toxin accumulation in predatory species
- In the United States
 → introduced in 1988 into Lake St. Clair
 → spread to all of the Great Lakes by 1990

Picture(s) from: http://fl.biology.usgs.gov/Nonindigenous_Species/ZM_Progression/zm_progression.html

The Deterministic Model

Cannibalism

$$n_{1}(t+1) = \sigma_{1} exp[-\beta N(t)] \frac{f_{2}n_{2}(t)}{2} + \frac{f_{3}n_{3}(t)}{2} + \frac{f_{4}n_{4}(t)}{2}$$

$$n_{2}(t+1) = \sigma_{1}n_{1}(t)$$

$$n_{3}(t+1) = \sigma_{2}n_{2}(t)$$

$$n_{4}(t+1) = \sigma_{3}n_{3}(t) + \sigma_{4}n_{4}(t)$$
Reproduction

Parameter	Value	Description
σ_0	0.01	combined rate of veliger survival and birth
σ_1	0.88	survival rate of Stage 1 mussels to Stage 2
σ_2	0.41	survival rate of Stage 2 mussels to Stage 3
σ_3	0.35	survival rate of Stage 3 mussels to Stage $4+$
σ_4	0.04	retention rate of Stage 4+ mussels
f_2	0.24×10^6	fecundity of Stage 2 female mussels
f_3	$0.465 imes 10^6$	fecundity of Stage 3 female mussels
f_4	$0.795 imes 10^6$	fecundity of Stage 4 female mussels
eta	1.0	filtration rate of adult mussels

The Population Behaviors

Cyclic Pattern

Chaotic Pattern

50

Stage 4+

Stable Pattern

The Multidimensional ParameterAnalysisParameter | Minimum | Step Size | Maximum

Parameter	Minimum	Step Size	Maximum
σ_0	0.0	0.005	0.05
σ_4	0.0	0.01	0.1
eta	0.0	0.1	1.0

The Multidimensional ParameterAnalysisParameter | Minimum | Step Size | Maximum

Parameter	Minimum	Step Size	Maximum
σ_0	0.0	0.005	0.05
σ_4	0.0	0.01	0.1
eta	0.0	0.1	1.0

60

80

07

Value .05 .06

σ4 \ 04

02 .03

5

0

0

The β Parameter Analysis

The β Parameter Analysis Chaotic Pattern Cyclic Pattern

The β Parameter Analysis

Cyclic Pattern

The Stochastic Model

The Stochastic Model

Time and Event Generation Algorithm

- 1) Start at $t_0 = 0$
- 2) Generate a random number (θ_1) such that $0 \le \theta_1 \le 1$
- Calculate Δt based on an exponential distribution

4) $t_{n+1} = t_n + \Delta t$ 5) Assign probabilities to each possible event

Ever	vent Stage 1 Deat		eath	Stage 1 Maturation		Stage 2 Death		Stage 2 Promotion	
Probab	ility $1 - \sigma_1$			σ_1		$1-\sigma_2$		σ_2	
	Stag	ge 3 Death	Sta	ge 3 Promotion	Stag	ge 4+ Death	Re	etention of Stage $4+$	
Ľ	$1-\sigma_3$			σ_3		$1 - \sigma_4$		σ_4	
E.					:	danna ta			

6) Scale the probabilities down to add up to 1

The Stochastic Model

The Stochastic Graphs

Chaotic

Pattern

Stable

Pattern

Stochastic Model Trials

Cyclic Pattern

The References

Acknowledgements: Dr. Jay Walton (Texas A&M University) and Dr. May Boggess (Texas A&M University)

[1] The curse of the water hyacinth. *Economist*, 346(8050):68 - 69, 1998.

- [2] D. Annoni, I. Bianchi, A. Girod, and M. Mariani. Inserimento di dreissena polymorpha (pallas)(mollusca bivalvia) nelle malacocenosi costiere del lago di garda (nord italia). Quaderni della Civica Stazione Idrobiologica di Milano, 6:5–84, 1978.
- P. W. Bartlett. Colorado beetles reported in england, wales and scotland, 1975. Plant Pathology, 25(1):44 – 47, 1976.
- [4] Helen Buttery. In praise of a pest. Maclean's, 114(41):61, 2001.
- [5] Renato Casagrandi, Lorenzo Mari, and Marino Gatto. Zebra mussel (dreis- [14] sena polymorpha) effects on sediment, other zoobenthos, and the diet and growth of adult yellow perch (perca flavescens) in pond enclosures. *Canadian Journal of Fisheries and Aquatic Sciences*, 54(8):1903–1915, August [15] 1997.
- [6] Renato Casagrandi, Lorenzo Mari, and Marino Gatto. Modelling the local dynamics of the zebra mussel (dreissena polymorpha). Freshwater Biology, [16] 52(7):1223–1238, July 2007.
- [7] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81:2340–2361, May 1977.
- [8] Alexander Y. Karatayev, Lyubov E. Burlakova, and Dianna K. Padilla. [18] Growth rate and longevity of dreissena polymorpha (pallas): A review and recommendations for future study. *Journal of Shellfish Research*, 25:23–32, April 2006.
- [9] StataCorp LP. Stata statistical software: Release 11, 2009.
- [10] Gerald L. Mackie and Don W. Schloesser. Comparative biology of zebra mussels in europe and north america: An overview. *American Zoologist*, 36(3):244–258, 1996.

- [11] Lorenzo Mari, Renato Casagrandi, Maria Teresa Pisani, Emiliano Pucci, and Marino Gatto. When will the zebra mussel reach florence? a model for the spread of ji¿dreissena polymorphaj/i¿ in the arno water system (italy). 2(4), 2009.
- [12] Robert F. McMahon. The physiological ecology of the zebra mussel, dreissena polymorpha, in north america and europe. *American Zoologist*, 36(3):339–363, June 1996.
- [13] Kristen M. Nelson, Carl R. Ruetz, and Donald G. Uzarski. Colonisation by dreissena of great lakes coastal ecosystems: how suitable are wetlands?. *Freshwater Biology*, 54(11):2290 – 2299, 2009.
- [14] Charles R. O'Neill Jr. Economic impact of zebra mussels results from the 1995 national zebra mussel information clearinghouse study. *Great Lakes Research Review*, 3(1), April 1997.
- [5] Jeffrey L. Ram, Peter P. Fong, and David W. Garton. Physiological aspects of zebra mussel reproduction: Maturation, spawning, and fertilization. *American Zoologist*, 36(3):326–338, June 1996.
- [6] Jeffrey L. Ram and Robert F. McMahon. Introduction: The biology, ecology, and physiology of zebra mussels. *American Zoologist*, 36(3):239–243, June 1996.
- [17] Herbert Schildt. Teach Yourself C. Osborne McGraw-Hill, Berkeley, CA, 1990.
 - 8] Rowland H. Taylor and Bruce W. Thomas. Rats eradicated from rugged breaksea island (170 ha), fiordland, new zealand. *Biological Conservation*, 65(3):191 – 198, 1993.
- [19] Levente Timar and Daniel J. Phaneuf. Modeling the human-induced spread of an aquatic invasive: The case of the zebra mussel. *Ecological Economics*, 68(12):3060 – 3071, 2009.

$$\begin{split} n_1(t+1) &= \sigma_0 exp \left[-\beta N(t) \right] \left[\frac{f_2 n_2(t)}{2} + \frac{f_3 n_3(t)}{2} + \frac{f_4 n_4(t)}{2} \right] \\ N(t+1) &= \sigma_0 exp \left[-\beta N(t) \right] \left[\frac{f_2 n_2(t)}{2} + \frac{f_3 n_3(t)}{2} + \frac{f_4 n_4(t)}{2} \right] + \\ \sigma_1 n_1(t) + \sigma_2 n_2(t) + \sigma_3 n_3(t) + \sigma_4 n_4(t) \\ n_4(t+1) &= \sigma_3 n_3(t) + \sigma_4 n_4(t) \end{split}$$

 $\sigma_{min}N(t) \le \sigma_1 n_1(t) + \sigma_2 n_2(t) + \sigma_3 n_3(t) + \sigma_4 n_4(t) \le \sigma_{max}N(t)$

$$\begin{split} N(t+1) &= \sigma_0 exp \left[-\beta N(t) \right] \left[\frac{f_2 n_2(t)}{2} + \frac{f_3 n_3(t)}{2} + \frac{f_4 n_4(t)}{2} \right] + \\ \sigma_1 n_1(t) + \sigma_2 n_2(t) + \sigma_3 n_3(t) + \sigma_4 n_4(t) \end{split}$$
$$\begin{aligned} n_2(t) &= \sigma_1 n_1(t-1) \quad n_3(t) = \sigma_2 n_2(t-1) \quad n_4(t) = \sigma_3 n_3(t-1) + \sigma_4 n_4(t-1) \end{aligned}$$
$$\begin{aligned} \frac{\sigma_0}{2} exp \left[-\beta N(t) \right] \left[f_2 \sigma_1 n_1(t-1) + f_3 \sigma_2 n_2(t-1) + f_4 \left(\sigma_3 n_3(t-1) + \sigma_4 n_4(t-1) \right) \right] \end{aligned}$$

$$\frac{\sigma_0}{2} exp\left[-\beta N(t)\right] (f\sigma)_{min} N(t-1) \le \sigma_0 exp\left[-\beta N(t)\right] \times \left[\frac{f_2 n_2(t)}{2} + \frac{f_3 n_3(t)}{2} + \frac{f_4 n_4(t)}{2}\right] \le \frac{\sigma_0}{2} exp\left[-\beta N(t)\right] (f\sigma)_{max} N(t-1)$$

$$\begin{aligned} \sigma_{\min} N(t) &+ \frac{\sigma_{0}}{2} exp[-\beta N(t)] (f\sigma)_{\min} N(t-1) \\ &\leq N(t+1) \\ \sigma_{\max} N(t+1) &= \sigma_{0} exp[-\beta N(t)] \frac{f_{2}n_{2}(t)}{2} + \frac{f_{3}n_{3}(t)}{2} + \frac{f_{4}n_{4}(t)}{2} + \\ \sigma_{\max} N(t) + \frac{\sigma_{0}}{2} exp[-\beta N(t)] (f\sigma)_{\max} N(t-1) \end{aligned}$$

