Sums of
Squares
Caitlin A.
Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

Fraction of Nonnegative Polynomials which are Sums of Squares

Caitlin A. Lownes

Texas A \& M University - REU Program

$$
\text { July 26, } 2011
$$

Introduction

Sums of
Squares
Caitlin A. Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

- A polynomial $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is a sum of squares polynomial (SOS) if $f=\sum_{i=1}^{k} p_{i}^{2}$ for some polynomials p_{i}.

Introduction

Sums of
Squares
Caitlin A.
Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

■ A polynomial $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is a sum of squares polynomial (SOS) if $f=\sum_{i=1}^{k} p_{i}^{2}$ for some polynomials p_{i}.

- Parrilo created an algorithm to optimize SOS polynomials in polynomial time via semidefinite programming. Polynomial optimization has applications in many areas such as electrical engineering.

Introduction

Sums of
Squares
Caitlin A.
Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

- A polynomial $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is a sum of squares polynomial (SOS) if $f=\sum_{i=1}^{k} p_{i}^{2}$ for some polynomials p_{i}.
- Parrilo created an algorithm to optimize SOS polynomials in polynomial time via semidefinite programming.
Polynomial optimization has applications in many areas such as electrical engineering.
- All SOS polynomials are nonnegative. How many nonnegative polynomials are SOS?

Previous work

Sums of
Squares
Caitlin A.
Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

- Hilbert showed that all nonnegative univariate polynomials, quadratic forms, and ternary quartics are sums of squares. For all other cases, there exist nonnegative polynomials which are not SOS.

Previous work

Sums of
Squares
Caitlin A.
Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

- Hilbert showed that all nonnegative univariate polynomials, quadratic forms, and ternary quartics are sums of squares. For all other cases, there exist nonnegative polynomials which are not SOS.
- For nonnegative polynomials of fixed degree, previous results by Blekherman show that the fraction of nonnegative polynomials that are SOS approaches zero as the number of variables increases.

Previous work

Sums of
Squares
Caitlin A.
Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

■ Hilbert showed that all nonnegative univariate polynomials, quadratic forms, and ternary quartics are sums of squares. For all other cases, there exist nonnegative polynomials which are not SOS.

- For nonnegative polynomials of fixed degree, previous results by Blekherman show that the fraction of nonnegative polynomials that are SOS approaches zero as the number of variables increases.
■ What about polynomials in few variables of low degree?

Cone of Polynomials

Sums of
Squares
Caitlin A. Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

- Focus on bivariate polynomials $f(x, y), \operatorname{deg}_{y}(f)$ and $\operatorname{deg}_{x}(f)$ at most 4:

$$
\begin{gathered}
f(x, y)=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} x^{3}+c_{5} x^{4}+c_{6} y+c_{7} x y+ \\
c_{8} x^{2} y+c_{9} x^{3} y+c_{10} x^{4} y+c_{11} y^{2}+c_{12} x y^{2}+c_{13} x^{2} y^{2}+ \\
c_{14} x^{3} y^{2}+c_{15} x^{4} y^{2}+c_{16} y^{3}+c_{17} x y^{3}+c_{18} x^{2} y^{3}+c_{19} x^{3} y^{3}+ \\
c_{20} x^{4} y^{3}+c_{21} y^{4}+c_{22} x y^{4}+c_{23} x^{2} y^{4}+c_{24} x^{3} y^{4}+c_{25} x^{4} y^{4}
\end{gathered}
$$

Cone of Polynomials

Sums of
Squares
Caitlin A.
Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

- Focus on bivariate polynomials $f(x, y), \operatorname{deg}_{y}(f)$ and $\operatorname{deg}_{x}(f)$ at most 4:

$$
\begin{gathered}
f(x, y)=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} x^{3}+c_{5} x^{4}+c_{6} y+c_{7} x y+ \\
c_{8} x^{2} y+c_{9} x^{3} y+c_{10} x^{4} y+c_{11} y^{2}+c_{12} x y^{2}+c_{13} x^{2} y^{2}+ \\
c_{14} x^{3} y^{2}+c_{15} x^{4} y^{2}+c_{16} y^{3}+c_{17} x y^{3}+c_{18} x^{2} y^{3}+c_{19} x^{3} y^{3}+ \\
c_{20} x^{4} y^{3}+c_{21} y^{4}+c_{22} x y^{4}+c_{23} x^{2} y^{4}+c_{24} x^{3} y^{4}+c_{25} x^{4} y^{4}
\end{gathered}
$$

- The set of nonnegative polynomials of this type form a 25 dimensional cone, and the set of sums of squares of polynomials form a cone inside.

Cone of Polynomials

Sums of
Squares
Caitlin A. Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

- Focus on bivariate polynomials $f(x, y), \operatorname{deg}_{y}(f)$ and $\operatorname{deg}_{x}(f)$ at most 4:

$$
\begin{gathered}
f(x, y)=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} x^{3}+c_{5} x^{4}+c_{6} y+c_{7} x y+ \\
c_{8} x^{2} y+c_{9} x^{3} y+c_{10} x^{4} y+c_{11} y^{2}+c_{12} x y^{2}+c_{13} x^{2} y^{2}+ \\
c_{14} x^{3} y^{2}+c_{15} x^{4} y^{2}+c_{16} y^{3}+c_{17} x y^{3}+c_{18} x^{2} y^{3}+c_{19} x^{3} y^{3}+ \\
c_{20} x^{4} y^{3}+c_{21} y^{4}+c_{22} x y^{4}+c_{23} x^{2} y^{4}+c_{24} x^{3} y^{4}+c_{25} x^{4} y^{4}
\end{gathered}
$$

■ The set of nonnegative polynomials of this type form a 25 dimensional cone, and the set of sums of squares of polynomials form a cone inside.

- Intersect the cones with the hyperplane of polynomials

$$
\int_{S^{1} \times S^{1}} f \mathrm{~d} \mu=1 .
$$

Main Idea

Sums of
Squares
Caitlin A. Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

- 24 dimensional convex body of sum of squares polynomials inside convex body of nonnegative polynomials.

Main Idea

Sums of
Squares
Caitlin A.
Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

- 24 dimensional convex body of sum of squares polynomials inside convex body of nonnegative polynomials.
■ Find ratio of the volumes to find the fraction.

Hit and Run

Sums of
Squares
Caitlin A. Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

Figure: Hit and Run algorithm

Choosing a direction

Sums of
Squares
Caitlin A. Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

- Begin with a polynomial f in the convex body.

Choosing a direction

Sums of
Squares
Caitlin A. Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

- Begin with a polynomial f in the convex body.
- Choose a direction v uniformly from the space of polynomials

$$
\int_{S^{1} \times S^{1}} g \mathrm{~d} \mu=0 .
$$

Choosing a direction

Sums of
Squares
Caitlin A. Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

- Begin with a polynomial f in the convex body.
- Choose a direction v uniformly from the space of polynomials

$$
\int_{S^{1} \times S^{1}} g \mathrm{~d} \mu=0 .
$$

■ Then,

$$
\int_{S^{1} \times S^{1}}(f+t \cdot v) \mathrm{d} \mu=1 .
$$

Choosing a direction

Sums of
Squares
Caitlin A.
Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

- Begin with a polynomial f in the convex body.

■ Choose a direction v uniformly from the space of polynomials

$$
\int_{S^{1} \times S^{1}} g \mathrm{~d} \mu=0 .
$$

■ Then,

$$
\int_{S^{1} \times S^{1}}(f+t \cdot v) \mathrm{d} \mu=1
$$

■ How do we find the values of t at the endpoints?

The support A of a polynomial

Sums of
Squares
Caitlin A. Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

A-discriminant

Sums of
Squares
Caitlin A.
Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

■ Given a polynomial $h\left(x_{1}, \ldots, x_{n}\right)$ with support A, the A-discriminant $\Delta_{A}(h)$ is an irreducible polynomial in the coefficients of h which vanishes when h has a degenerate root (i.e. $\frac{\partial h}{\partial x_{i}}=0$ for all i).

A-discriminant

Sums of
Squares
Caitlin A.
Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

■ Given a polynomial $h\left(x_{1}, \ldots, x_{n}\right)$ with support A, the A-discriminant $\Delta_{A}(h)$ is an irreducible polynomial in the coefficients of h which vanishes when h has a degenerate root (i.e. $\frac{\partial h}{\partial x_{i}}=0$ for all i).

- Simple example:

$$
f(x)=a x^{2}+b x+c, \Delta_{A}(f)=b^{2}-4 a c
$$

A-discriminant

Sums of
Squares
Caitlin A.
Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

■ Given a polynomial $h\left(x_{1}, \ldots, x_{n}\right)$ with support A, the A-discriminant $\Delta_{A}(h)$ is an irreducible polynomial in the coefficients of h which vanishes when h has a degenerate root (i.e. $\frac{\partial h}{\partial x_{i}}=0$ for all i).

- Simple example:

$$
f(x)=a x^{2}+b x+c, \Delta_{A}(f)=b^{2}-4 a c
$$

- A nonnegative polynomial h is on the boundary of our cone when $\Delta_{A}(h)=0$. However, Δ_{A} is not easy to compute!

Finding the values of t

Sums of
Squares
Caitlin A. Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

- The resultant of polynomials h_{1}, \ldots, h_{k} is an irreducible polynomial in the coefficients of h_{1}, \ldots, h_{k} which vanishes when h_{1}, \ldots, h_{k} have a common root.

Finding the values of t

Sums of
Squares
Caitlin A.
Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

■ The resultant of polynomials h_{1}, \ldots, h_{k} is an irreducible polynomial in the coefficients of h_{1}, \ldots, h_{k} which vanishes when h_{1}, \ldots, h_{k} have a common root.

- The principal A-determinant E_{A} is the following resultant:

$$
E_{A}(h)=\operatorname{Res}_{(A, A, A)}\left(h, x \frac{\partial h}{\partial x}, y \frac{\partial h}{\partial y}\right)
$$

When h is bivariate, we know how to compute this resultant.

Finding the values of t

Sums of
Squares
Caitlin A.
Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

■ The resultant of polynomials h_{1}, \ldots, h_{k} is an irreducible polynomial in the coefficients of h_{1}, \ldots, h_{k} which vanishes when h_{1}, \ldots, h_{k} have a common root.
■ The principal A-determinant E_{A} is the following resultant:

$$
E_{A}(h)=\operatorname{Res}_{(A, A, A)}\left(h, x \frac{\partial h}{\partial x}, y \frac{\partial h}{\partial y}\right)
$$

When h is bivariate, we know how to compute this resultant.

- E_{A} is a multiple of the A-discriminant:

$$
E_{A}(h)=\left(\Delta_{A}(h)\right)\left(\Delta_{-} \Delta_{-} \Delta_{\mid} \Delta_{\mid} \Delta^{2} . \Delta . \Delta . \Delta .\right)
$$

Finding the values of t

Sums of
Squares
Caitlin A.
Lownes

Introduction
Main Idea
Hit and Run
Choosing a direction

Finding the endpoints

- The resultant of polynomials h_{1}, \ldots, h_{k} is an irreducible polynomial in the coefficients of h_{1}, \ldots, h_{k} which vanishes when h_{1}, \ldots, h_{k} have a common root.
- The principal A-determinant E_{A} is the following resultant:

$$
E_{A}(h)=\operatorname{Res}_{(A, A, A)}\left(h, x \frac{\partial h}{\partial x}, y \frac{\partial h}{\partial y}\right)
$$

When h is bivariate, we know how to compute this resultant.

- E_{A} is a multiple of the A-discriminant:

$$
E_{A}(h)=\left(\Delta_{A}(h)\right)\left(\Delta_{-} \Delta_{-} \Delta_{\mid} \Delta_{\mid} \Delta^{2} . \Delta . \Delta . \Delta .\right)
$$

- To find the values of t at the endpoints, find the roots of $\Delta_{A}(f+t \cdot v)$ closest to 0 !

