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Introduction

A polynomial f ∈ R[x1, . . . , xn] is a sum of squares
polynomial (SOS) if f = Σk

i=1p
2
i for some polynomials pi .

Parrilo created an algorithm to optimize SOS polynomials
in polynomial time via semidefinite programming.
Polynomial optimization has applications in many areas
such as electrical engineering.

All SOS polynomials are nonnegative. How many
nonnegative polynomials are SOS?
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Previous work

Hilbert showed that all nonnegative univariate
polynomials, quadratic forms, and ternary quartics are
sums of squares. For all other cases, there exist
nonnegative polynomials which are not SOS.

For nonnegative polynomials of fixed degree, previous
results by Blekherman show that the fraction of
nonnegative polynomials that are SOS approaches zero as
the number of variables increases.

What about polynomials in few variables of low degree?
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Cone of Polynomials

Focus on bivariate polynomials f (x , y), degy (f ) and
degx(f ) at most 4:

f (x , y) = c1 + c2x + c3x
2 + c4x

3 + c5x
4 + c6y + c7xy +

c8x
2y + c9x

3y + c10x
4y + c11y

2 + c12xy
2 + c13x

2y2 +
c14x

3y2 + c15x
4y2 + c16y

3 + c17xy
3 + c18x

2y3 + c19x
3y3 +

c20x
4y3 + c21y

4 + c22xy
4 + c23x

2y4 + c24x
3y4 + c25x

4y4

The set of nonnegative polynomials of this type form a 25
dimensional cone, and the set of sums of squares of
polynomials form a cone inside.

Intersect the cones with the hyperplane of polynomials∫
S1×S1f dµ = 1.
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Main Idea

24 dimensional convex body of sum of squares polynomials
inside convex body of nonnegative polynomials.

Find ratio of the volumes to find the fraction.
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Hit and Run

Figure: Hit and Run algorithm
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Choosing a direction

Begin with a polynomial f in the convex body.

Choose a direction v uniformly from the space of
polynomials ∫

S1×S1g dµ = 0.

Then, ∫
S1×S1(f + t · v) dµ = 1.

How do we find the values of t at the endpoints?
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The support A of a polynomial
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A-discriminant

Given a polynomial h(x1, . . . , xn) with support A, the
A-discriminant ∆A(h) is an irreducible polynomial in the
coefficients of h which vanishes when h has a degenerate
root (i.e. ∂h

∂xi
= 0 for all i).

Simple example:

f (x) = ax2 + bx + c , ∆A(f ) = b2 − 4ac

A nonnegative polynomial h is on the boundary of our cone
when ∆A(h) = 0. However, ∆A is not easy to compute!
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Finding the values of t

The resultant of polynomials h1, . . . , hk is an irreducible
polynomial in the coefficients of h1, . . . , hk which vanishes
when h1, . . . , hk have a common root.

The principal A-determinant EA is the following resultant:

EA(h) = Res(A,A,A)(h, x
∂h
∂x , y

∂h
∂y )

When h is bivariate, we know how to compute this
resultant.

EA is a multiple of the A-discriminant:

EA(h) = (∆A(h))(∆ ∆ ∆|∆|∆·∆·∆·∆·)

To find the values of t at the endpoints, find the roots of
∆A(f + t · v) closest to 0!
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