Sums of Squares

Caitlin A. Lownes

Introduction

Hit and Run

Choosing a direction

Finding the endpoints

Fraction of Nonnegative Polynomials which are Sums of Squares

Caitlin A. Lownes

Texas A & M University - REU Program

July 26, 2011

Introduction

Sums of Squares

Caitlin A. Lownes

Introduction

Main Idea

Hit and Run

Choosing a direction

Finding the endpoints • A polynomial $f \in \mathbb{R}[x_1, \dots, x_n]$ is a sum of squares polynomial (SOS) if $f = \sum_{i=1}^k p_i^2$ for some polynomials p_i .

Introduction

Sums of Squares

Caitlin A. Lownes

Introduction

Main Idea

Hit and Run

Choosing a direction

Finding the endpoints

- A polynomial $f \in \mathbb{R}[x_1, \dots, x_n]$ is a sum of squares polynomial (SOS) if $f = \sum_{i=1}^k p_i^2$ for some polynomials p_i .
- Parrilo created an algorithm to optimize SOS polynomials in polynomial time via semidefinite programming. Polynomial optimization has applications in many areas such as electrical engineering.

Introduction

Sums of Squares

Caitlin A. Lownes

Introduction

Main Idea

Hit and Run

Choosing a direction

Finding the endpoints • A polynomial $f \in \mathbb{R}[x_1, \dots, x_n]$ is a sum of squares polynomial (SOS) if $f = \sum_{i=1}^k p_i^2$ for some polynomials p_i .

- Parrilo created an algorithm to optimize SOS polynomials in polynomial time via semidefinite programming. Polynomial optimization has applications in many areas such as electrical engineering.
- All SOS polynomials are nonnegative. How many nonnegative polynomials are SOS?

Previous work

Sums of Squares

Caitlin A. Lownes

Introduction

Main Idea

Hit and Run

Choosing a direction

Finding the endpoints Hilbert showed that all nonnegative univariate polynomials, quadratic forms, and ternary quartics are sums of squares. For all other cases, there exist nonnegative polynomials which are not SOS.

Previous work

Sums of Squares

Caitlin A. Lownes

Introduction

- Main Idea
- Hit and Run
- Choosing a direction
- Finding the endpoints

- Hilbert showed that all nonnegative univariate polynomials, quadratic forms, and ternary quartics are sums of squares. For all other cases, there exist nonnegative polynomials which are not SOS.
- For nonnegative polynomials of fixed degree, previous results by Blekherman show that the fraction of nonnegative polynomials that are SOS approaches zero as the number of variables increases.

Previous work

Sums of Squares

Caitlin A. Lownes

Introduction

- Main Idea
- Hit and Run
- Choosing a direction
- Finding the endpoints

- Hilbert showed that all nonnegative univariate polynomials, quadratic forms, and ternary quartics are sums of squares. For all other cases, there exist nonnegative polynomials which are not SOS.
- For nonnegative polynomials of fixed degree, previous results by Blekherman show that the fraction of nonnegative polynomials that are SOS approaches zero as the number of variables increases.
- What about polynomials in few variables of low degree?

Cone of Polynomials

Sums of Squares

Caitlin A. Lownes

Introduction

Main Idea

Hit and Run

Choosing a direction

Finding the endpoints Focus on bivariate polynomials f(x, y), deg_y(f) and deg_x(f) at most 4:

$$f(x, y) = c_1 + c_2 x + c_3 x^2 + c_4 x^3 + c_5 x^4 + c_6 y + c_7 xy + c_8 x^2 y + c_9 x^3 y + c_{10} x^4 y + c_{11} y^2 + c_{12} xy^2 + c_{13} x^2 y^2 + c_{14} x^3 y^2 + c_{15} x^4 y^2 + c_{16} y^3 + c_{17} xy^3 + c_{18} x^2 y^3 + c_{19} x^3 y^3 + c_{20} x^4 y^3 + c_{21} y^4 + c_{22} xy^4 + c_{23} x^2 y^4 + c_{24} x^3 y^4 + c_{25} x^4 y^4$$

Cone of Polynomials

Sums of Squares

Caitlin A. Lownes

Introduction

Main Idea

Hit and Run

Choosing a direction

Finding the endpoints Focus on bivariate polynomials f(x, y), deg_y(f) and deg_x(f) at most 4:

$$f(x, y) = c_1 + c_2 x + c_3 x^2 + c_4 x^3 + c_5 x^4 + c_6 y + c_7 xy + c_8 x^2 y + c_9 x^3 y + c_{10} x^4 y + c_{11} y^2 + c_{12} xy^2 + c_{13} x^2 y^2 + c_{14} x^3 y^2 + c_{15} x^4 y^2 + c_{16} y^3 + c_{17} xy^3 + c_{18} x^2 y^3 + c_{19} x^3 y^3 + c_{20} x^4 y^3 + c_{21} y^4 + c_{22} xy^4 + c_{23} x^2 y^4 + c_{24} x^3 y^4 + c_{25} x^4 y^4$$

The set of nonnegative polynomials of this type form a 25 dimensional cone, and the set of sums of squares of polynomials form a cone inside.

Cone of Polynomials

Sums of Squares

Caitlin A. Lownes

Introduction

Main Idea

Hit and Run

Choosing a direction

Finding the endpoints Focus on bivariate polynomials f(x, y), deg_y(f) and deg_x(f) at most 4:

$$f(x, y) = c_1 + c_2 x + c_3 x^2 + c_4 x^3 + c_5 x^4 + c_6 y + c_7 xy + c_8 x^2 y + c_9 x^3 y + c_{10} x^4 y + c_{11} y^2 + c_{12} xy^2 + c_{13} x^2 y^2 + c_{14} x^3 y^2 + c_{15} x^4 y^2 + c_{16} y^3 + c_{17} xy^3 + c_{18} x^2 y^3 + c_{19} x^3 y^3 + c_{20} x^4 y^3 + c_{21} y^4 + c_{22} xy^4 + c_{23} x^2 y^4 + c_{24} x^3 y^4 + c_{25} x^4 y^4$$

- The set of nonnegative polynomials of this type form a 25 dimensional cone, and the set of sums of squares of polynomials form a cone inside.
- Intersect the cones with the hyperplane of polynomials

$$\int_{S^1 \times S^1} f \, \mathrm{d}\mu = 1.$$

Main Idea

Sums of Squares

Caitlin A. Lownes

Introduction

Main Idea

Hit and Rur

Choosing a direction

Finding the endpoints 24 dimensional convex body of sum of squares polynomials inside convex body of nonnegative polynomials.

Main Idea

Sums of Squares

Caitlin A. Lownes

Introduction

Main Idea

Hit and Rur

Choosing a direction

Finding the endpoints

- 24 dimensional convex body of sum of squares polynomials inside convex body of nonnegative polynomials.
- Find ratio of the volumes to find the fraction.

Hit and Run

Caitlin A Lownes

Introduction

Main Idea

Hit and Run

Choosing a direction

Finding the endpoints

Figure: Hit and Run algorithm

Sums of Squares

Caitlin A. Lownes

Introduction

Main Idea

Hit and Run

Choosing a direction

Finding the endpoints

Begin with a polynomial *f* in the convex body.

polynomials

Sums of Squares

Caitlin A. Lownes

Introduction

Main Idea

Hit and Run

Choosing a direction

Finding the endpoints Begin with a polynomial f in the convex body.
Choose a direction v uniformly from the space of

$$\int_{S^1 \times S^1} g \, \mathrm{d} \mu = 0.$$

Sums of Squares

Caitlin A. Lownes

Introduction

Main Idea

Hit and Run

Choosing a direction

Finding the endpoints

- Begin with a polynomial f in the convex body.
- Choose a direction v uniformly from the space of polynomials

$$\int_{S^1 \times S^1} g \, \mathrm{d}\mu = 0.$$

Then,

$$\int_{S^1 \times S^1} (f + t \cdot \mathbf{v}) \, \mathrm{d}\mu = 1.$$

Sums of Squares

Caitlin A. Lownes

Introduction

Main Idea

Hit and Run

Choosing a direction

Finding the endpoints

- Begin with a polynomial *f* in the convex body.
- Choose a direction v uniformly from the space of polynomials

$$\int_{S^1 \times S^1} g \, \mathrm{d}\mu = 0.$$

Then,

$$\int_{S^1\times S^1} (f+t\cdot v) \,\mathrm{d}\mu = 1.$$

How do we find the values of t at the endpoints?

The support A of a polynomial

A-discriminant

Sums of Squares

Caitlin A. Lownes

Introduction

Main Idea

Hit and Run

Choosing a direction

Finding the endpoints

Given a polynomial h(x₁,...,x_n) with support A, the A-discriminant Δ_A(h) is an irreducible polynomial in the coefficients of h which vanishes when h has a degenerate root (i.e. ∂h/∂x_i = 0 for all i).

A-discriminant

Sums of Squares

Caitlin A. Lownes

Introduction

Main Idea

Hit and Run

Choosing a direction

Finding the endpoints

- Given a polynomial h(x₁,...,x_n) with support A, the A-discriminant Δ_A(h) is an irreducible polynomial in the coefficients of h which vanishes when h has a degenerate root (i.e. ∂h/∂x_i = 0 for all i).
- Simple example:

$$f(x) = ax^2 + bx + c$$
, $\Delta_A(f) = b^2 - 4ac$

A-discriminant

Sums of Squares

Caitlin A. Lownes

Introduction

Main Idea

Hit and Run

Choosing a direction

Finding the endpoints

- Given a polynomial h(x₁,...,x_n) with support A, the A-discriminant Δ_A(h) is an irreducible polynomial in the coefficients of h which vanishes when h has a degenerate root (i.e. ∂h/∂x_i = 0 for all i).
- Simple example:

$$f(x) = ax^2 + bx + c$$
, $\Delta_A(f) = b^2 - 4ac$

 A nonnegative polynomial h is on the boundary of our cone when Δ_A(h) = 0. However, Δ_A is not easy to compute!

Sums of Squares

Caitlin A. Lownes

Introduction

Main Idea

Hit and Run

Choosing a direction

Finding the endpoints

• The resultant of polynomials h_1, \ldots, h_k is an irreducible polynomial in the coefficients of h_1, \ldots, h_k which vanishes when h_1, \ldots, h_k have a common root.

Sums of Squares

Caitlin A. Lownes

Introduction

Main Idea

Hit and Run

Choosing a direction

Finding the endpoints

- The resultant of polynomials h₁,..., h_k is an irreducible polynomial in the coefficients of h₁,..., h_k which vanishes when h₁,..., h_k have a common root.
- The principal A-determinant E_A is the following resultant: $E_A(h) = Res_{(A,A,A)}(h, x \frac{\partial h}{\partial x}, y \frac{\partial h}{\partial y})$

When h is bivariate, we know how to compute this resultant.

Sums of Squares

Caitlin A. Lownes

Introduction

Main Idea

Hit and Run

Choosing a direction

Finding the endpoints

- The resultant of polynomials h₁,..., h_k is an irreducible polynomial in the coefficients of h₁,..., h_k which vanishes when h₁,..., h_k have a common root.
- The principal A-determinant E_A is the following resultant: $E_A(h) = Res_{(A,A,A)}(h, x \frac{\partial h}{\partial x}, y \frac{\partial h}{\partial y})$

When h is bivariate, we know how to compute this resultant.

• E_A is a multiple of the A-discriminant:

 $E_{A}(h) = (\Delta_{A}(h))(\Delta_{\Delta}\Delta_{|}\Delta_{|}\Delta_{.}\Delta_{.}\Delta_{.}\Delta_{.})$

Sums of Squares

Caitlin A. Lownes

Introduction

Main Idea

Hit and Run

Choosing a direction

Finding the endpoints

- The resultant of polynomials h₁,..., h_k is an irreducible polynomial in the coefficients of h₁,..., h_k which vanishes when h₁,..., h_k have a common root.
- The principal A-determinant E_A is the following resultant: $E_A(h) = Res_{(A,A,A)}(h, x \frac{\partial h}{\partial x}, y \frac{\partial h}{\partial y})$

When h is bivariate, we know how to compute this resultant.

• *E_A* is a multiple of the *A*-discriminant:

$$E_A(h) = (\Delta_A(h))(\Delta_\Delta_\Delta_|\Delta|\Delta.\Delta.\Delta.\Delta)$$

• To find the values of t at the endpoints, find the roots of $\Delta_A(f + t \cdot v)$ closest to 0!