Optimal Harvesting Models for Fishery Populations

Corinne Wentworth St. Mary's College of Maryland Mentored by: Dr. Masami Fujiwara and Dr. Jay Walton

July 28, 2011

(4月) (4日) (4日)

Corinne Wentworth St. Mary's College of Maryland Mentored Optimal Harvesting Models for Fishery Populations

Outline

- Introduction
- 2 Population models
- 3 Analysis
 - Equilibrium vs. transient
 - Initial conditions
- Ontinuation of research

Motivation

Fish worldwide are at varying population levels

- Healthy
- Declining
- Endangered

Dilemma:

- Economy demands fish for food
- Ecologically important to keep populations intact

What is fishery management?

• The study of fish populations under harvesting strategies

Research

We have been investigating:

- Keeping a population stable
- Harvesting under different rates (some time dependent)

Problem:

• How can we maximize yield without endangering population sustainability?

Allee effect

Definition

In population dynamics an <u>Allee effect</u> occurs when there is a positive correlation between population density n(t) and population growth rate $\frac{dn}{dt}$.

- When the population is small there is a penalty on reproduction
- Hard for individuals to find mates
- Leads to smaller growth rate

Single stage models

We will consider three models:

- Simple logsitic model $\frac{dn}{dt} = n(1 - n) - fn$
- Skewed logistic model $\frac{dn}{dt} = n^2(1-n) - fn$
- 3 Allee effect model $\frac{dn}{dt} = n(n-a)(1-n) - fn$

where *n* is fish population, *f* is harvest rate, and 0 < a < 1 is a constant (Allee effect).

For each model we found the equilibrium solution. We have also determined the harvest rate that maximizes yield.

Optimal Harvesting Models for Fishery Populations Population Models

Harvesting strategies

We will consider two harvesting strategies:

- Constant harvesting
- 2 Time dependent harvesting
 - f is a function of time

A ■

A constant harvesting strategy

Harvest at a rate 0 < f < 1 each time unit.

イロト イヨト イヨト イヨト

A time dependent harvesting strategy

In theory we could harvest at any function of t

• Impractical to implement

Simplified strategy:

$$f(t) = \begin{cases} f_1 & : 0 < t < \frac{T}{2} \\ f_2 & : \frac{T}{2} < t \le T \end{cases}$$

so we harvest for time T at two constant rates.

Yield

How do we calculate yield from the harvesting function?

$$Y := \int_0^T fn(t)dt$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Analysis of models

Classical approach:

- Find equilibrium solution
- Determine yield

Transient approach:

- Fix parameters (initial conditions, time)
- Find harvest rate that maximizes yield

▲ □ ► ▲ □ ►

Equilibrium

Definition

An equilibrium is <u>stable</u> if the system returns to equilibrium after small disturbances.

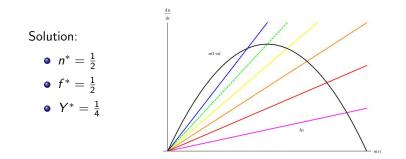
Otherwise, if the system moves away from equilibrium after small disturbances then the equilibrum is <u>unstable</u>.

Let n^*, f^* , and Y^* be population density, harvest rate, and yield at equilibrium.

Optimal Harvesting Models for Fishery Populations Analysis: Simple Logistic

Simple logistic model - equilibrium

$$\frac{dn}{dt} = n(1-n) - fn$$

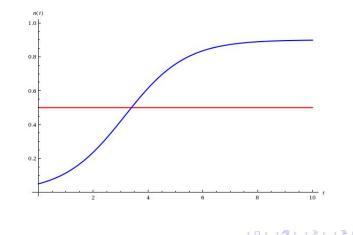


イロト イヨト イヨト イヨト

æ

Simple logistic solution

Equilibrium population denisity is half of the carrying capacity



Simple logistic - transient (time)



Yield as a function of harvest rate over various times:

• Initial population $n_0 = 1$

<->→ □→ < ≥→</>

< ≣⇒

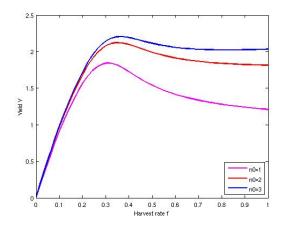
æ

Corinne Wentworth St. Mary's College of Maryland Mentored Optimal Harvesting Models for Fishery Populations

Simple logistic - transient (initial conditions)

Yield as a function of harvest rate for varying initial populations:

• Time *T* = 10



 -

Problems with simple logistic model

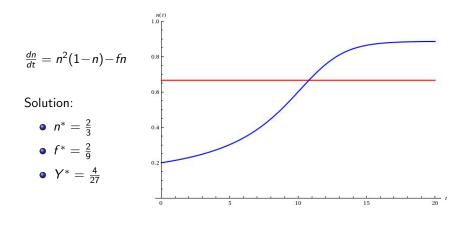
Problem: Simple logistic model has no reproductive penalty

• Reproductive rate is the same regardless of population size

Solution: Add a square term to the model giving us skewed logistic model

$$\frac{dn}{dt} = n^2(1-n) - fn$$

Skewed logistic model - equilibrium

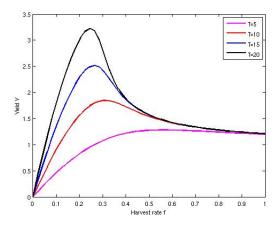


Corinne Wentworth St. Mary's College of Maryland Mentored Optimal Harvesting Models for Fishery Populations

イロト イヨト イヨト イヨト

æ

Skewed logistic - transient (time)



Yield as a function of harvest rate over various times:

• Initial population $n_0 = 1$

▲ □ ► ▲ □ ►

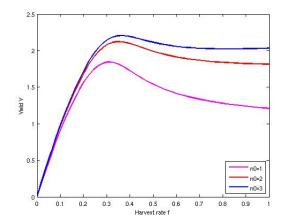
< ∃⇒

æ

Skewed logistic - transient (initial conditions)

Yield as a function of harvest rate for varying initial populations:

• Time *T* = 10



 -

Optimal Harvesting Models for Fishery Populations Analysis: Allee effect

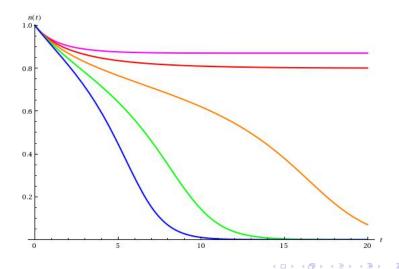
Allee effect model

How can we increase the penalty on reproduction?

- Add Allee effect
- As 0 < a < 1 increases penalty on reproduction increases

Optimal Harvesting Models for Fishery Populations Analysis: Allee effect

Allee effect solution



Corinne Wentworth St. Mary's College of Maryland Mentored Optimal Harvesting Models for Fishery Populations

Allee effect model - equilibrium

$$\frac{dn}{dt} = n(n-a)(1-n) - fn$$

There are two equilibria:

- n_1^* is unstable population will go to extinction
- n^{*}₂ is stable

イロト イヨト イヨト イヨト

æ

Analysis: Allee effect

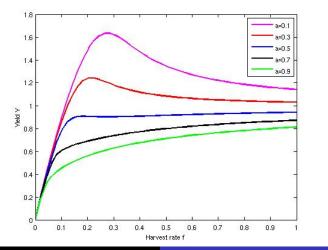
Allee effect model: $\frac{dn}{dt} = n(n-a)(1-n) - fn$

If
$$f \ge \left(\frac{1+a}{2}\right)^2$$
 as $t \to \infty$, $n(t)$ decreases to extinction
Given $f < \left(\frac{1+a}{2}\right)^2$
If $n_0 < n_1^*$, $n(t)$ decreases to extinction
If $n_0 < n_1^*$, $n(t)$ decreases to n_2^*
Given n_0
If $f > (n_0 - a)(1 - n_0)$, $n(t)$ decreases to extinction
If $f > (n_0 - a)(1 - n_0)$
 $n(t)$ decreases to extinction
 $a \neq f \le (n_0 - a)(1 - n_0)$

Optimal Harvesting Models for Fishery Populations Analysis: Allee effect

Allee effect model

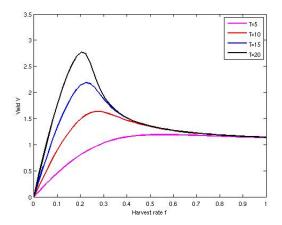
Harvest vs. yield for various 0 < a < 1



Corinne Wentworth St. Mary's College of Maryland Mentored Optimal Harvesting Models for Fishery Populations

Analysis: Allee effect

Allee effect - transient (time)



Yield as a function of harvest rate over various times:

• Allee effect a = 0.1

æ

∢ ≣ ≯

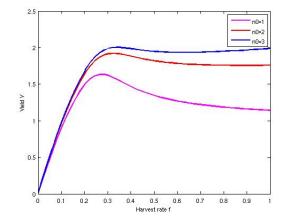
• Initial population $n_0 = 1$

Allee effect - transient (initial conditions)

Yield as a function of harvest rate for varying initial populations:

• *a* = 0.1

• Time *T* = 10



 -

What role do initial conditions play?

Let $n(0) = n_0$ denote initial population density.

- Allee effect if $n_0 < a$ the population goes extinct with constant harvesting.
- *Healthy population* if the population is healthy, then constant and time dependent strategies give same yield.
- Unhealthy if the population is unhealthy, ie. n₀ is small (less than equilibrium) then a time dependent harvesting will vastly increase yield over constant.

Possible further studies

- Expand these models to a two stage population with juvenilles and adults
- Construct models that include life history strategies of fish
- Optimization problem with two stage harvest function

Implement harvest functions with more than two stages