Bounding the Number of Components of Polynomial Hypersurfaces

Daniel Smith
UC Berkeley
2011-07-27

Often in application we are interested in finding zero sets of polynomial equations or systems of polynomial equations.

Often in application we are interested in finding zero sets of polynomial equations or systems of polynomial equations.

Example

A familiar problem: if we have a stationary car whose acceleration is a constant a, and we want to determine how long it will take the car to travel a distance d, we are interested in the solutions of

Often in application we are interested in finding zero sets of polynomial equations or systems of polynomial equations.

Example

A familiar problem: if we have a stationary car whose acceleration is a constant a, and we want to determine how long it will take the car to travel a distance d, we are interested in the solutions of

$$
\frac{1}{2} a t^{2}-d=0
$$

Often in application we are interested in finding zero sets of polynomial equations or systems of polynomial equations.

Example

A familiar problem: if we have a stationary car whose acceleration is a constant a, and we want to determine how long it will take the car to travel a distance d, we are interested in the solutions of

$$
\frac{1}{2} a t^{2}-d=0
$$

That is, we are interested in the zero set of $\frac{1}{2} a t^{2}-d$.

Bounding the Number of Components of Polynomial Hypersurfaces
Background

Some Caveats

Some Caveats

- But often, we're only interested in particular types of zero sets.

Some Caveats

- But often, we're only interested in particular types of zero sets.
- And a lot of the time, we have to use numerical methods to find solutions.

Some Caveats

- But often, we're only interested in particular types of zero sets.
- And a lot of the time, we have to use numerical methods to find solutions.
- In these cases, it helps to know how many solutions there are.

Example

Consider the polynomial $f=x^{5}-3 x-1$.

Example

Consider the polynomial $f=x^{5}-3 x-1$.

- FTOA: f has exactly 5 complex roots

Example

Consider the polynomial $f=x^{5}-3 x-1$.

- FTOA: f has exactly 5 complex roots
- Descartes' rule of signs: there is at most 1 real positive root.

Example

Consider the polynomial $f=x^{5}-3 x-1$.

- FTOA: f has exactly 5 complex roots
- Descartes' rule of signs: there is at most 1 real positive root.

Example

Consider the polynomial $f=x^{5}-3 x-1$.

- FTOA: f has exactly 5 complex roots
- Descartes' rule of signs: there is at most 1 real positive root.

Idea: we can tell when to stop looking if we know how many roots there are.

Notation
Given $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$, we define

$$
\mathbf{x}^{a}=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}
$$

Notation
Given $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$, we define

$$
\mathbf{x}^{a}=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}
$$

Example

We can write

$$
x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}^{2}
$$

Notation
Given $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$, we define

$$
\mathbf{x}^{a}=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}
$$

Example

We can write

$$
x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}^{2}
$$

as

$$
x^{a_{1}}+2 x^{a_{2}}+3 x^{a_{3}}
$$

where $a_{1}=(2,0), a_{2}=(1,1)$, and $a_{3}=(0,2)$.

For our purposes, we'll use the following definition of a polynomial: Definition
An n-variate m-nomial is a polynomial in n variables with m terms, that is, a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of the form

$$
f=\sum_{i=1}^{m} c_{i} \mathbf{x}^{a_{i}}
$$

where $c_{i} \in \mathbb{R}, \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, and $a_{i}=\left(a_{i, 1}, \ldots, a_{i, n}\right) \in \mathbb{Z}^{n}$.

For our purposes, we'll use the following definition of a polynomial:

Definition

An n-variate m-nomial is a polynomial in n variables with m terms, that is, a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of the form

$$
f=\sum_{i=1}^{m} c_{i} \mathbf{x}^{a_{i}}
$$

where $c_{i} \in \mathbb{R}, \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, and $a_{i}=\left(a_{i, 1}, \ldots, a_{i, n}\right) \in \mathbb{Z}^{n}$.

Example
$f=5 x_{1} x_{2}^{2}+7 x_{2}+3 x_{1}^{4}-8 x_{1}^{3} x_{2}-x_{2}^{5}$ is a 2 -variate 5 -nomial.

And now for the objects of our interest:
Definition
The positive real zero set of a polynomial $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the set $Z_{+}(f)=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{i}>0\right.$ and $\left.f(\mathbf{x})=0\right\}$.

And now for the objects of our interest:
Definition
The positive real zero set of a polynomial $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the set $Z_{+}(f)=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{i}>0\right.$ and $\left.f(\mathbf{x})=0\right\}$.

For polynomials in one variable, these are finite (unless the polynomial itself is 0). For multivariate polynomials, though, this need not be true.

Example
 $g=x^{5}-\frac{23}{20} x^{6}+x^{6} y^{2}-\frac{23}{20} x^{4} y^{10}+y^{25}$ has zero set

Example
$g=x^{5}-\frac{23}{20} x^{6}+x^{6} y^{2}-\frac{23}{20} x^{4} y^{10}+y^{25}$ has zero set

The connected components are the distinct curves in this set. Compact components are closed and bounded.

Bounding the Number of Components of Polynomial Hypersurfaces
ᄂResults

What do we know already?

What do we know already?

- For univariate polynomials, Descartes' rule of signs.

What do we know already?

- For univariate polynomials, Descartes' rule of signs.
- Khovanskii [2] gives a bound around $2\left(\begin{array}{c}\left(m_{2}^{-1}\right) \\ \hline\end{array} 2 n^{3}\right)^{n-1}$ for connected components.

What do we know already?

- For univariate polynomials, Descartes' rule of signs.
- Khovanskii [2] gives a bound around $2\left(\begin{array}{c}\left(m_{2}^{-1}\right) \\ \hline\end{array} 2^{3}\right)^{n-1}$ for connected components.
- Bihan \& Sottile [1] give a bound around $2\binom{m-n-1}{2}(m-n-1) n^{m-n-2}$ for compact components.

What do we know already?

- For univariate polynomials, Descartes' rule of signs.
- Khovanskii [2] gives a bound around $2\binom{(2-1}{2}\left(2 n^{3}\right)^{n-1}$ for connected components.
- Bihan \& Sottile [1] give a bound around $2\left({ }_{2}^{m-n-1}\right)(m-n-1) n^{m-n-2}$ for compact components.
But these are huge.

Even when we restrict our attention to 2-variate 5-nomials, we have

Even when we restrict our attention to 2-variate 5-nomials, we have

- Khovanskii: 1024

Even when we restrict our attention to 2-variate 5-nomials, we have

- Khovanskii: 1024
- Bihan \& Sottile: 9 (though actually they reduce it to 5)

Even when we restrict our attention to 2-variate 5-nomials, we have

- Khovanskii: 1024
- Bihan \& Sottile: 9 (though actually they reduce it to 5)

And these still seem to high

Can we be any more precise?

Can we be any more precise?

Yes.

Can we be any more precise?

Yes.
Viro diagrams are diffeotopic to positive real zero sets in certain conditions.

In order to tell, we have to look at \mathcal{A}-discriminant amoebae.
Example
Consider $f=\frac{21}{20}-x^{2} y+x^{3} y^{2}-x^{4} y^{4}+\frac{3}{4000} x^{5}$.
The \mathcal{A}-discriminant amoeba is

In order to tell, we have to look at \mathcal{A}-discriminant amoebae.
Example
Consider $f=\frac{21}{20}-x^{2} y+x^{3} y^{2}-x^{4} y^{4}+\frac{3}{4000} x^{5}$.
The \mathcal{A}-discriminant amoeba is

In order to tell, we have to look at \mathcal{A}-discriminant amoebae.
Example
Consider $f=\frac{21}{20}-x^{2} y+x^{3} y^{2}-x^{4} y^{4}+\frac{3}{4000} x^{5}$.
The \mathcal{A}-discriminant amoeba is

Example

Plotting the Viro diagram gives us

Bounding the Number of Components of Polynomial Hypersurfaces
ᄂResults

Example

Plotting the Viro diagram gives us

Example

Plotting the Viro diagram gives us

And the zero set is as above.

Unfortunately, this doesn't always work.

Unfortunately, this doesn't always work.

Example

Take $g=x^{4} y^{2}-x^{2} y^{4}-3 x^{2} y-9 x y^{2}+22$. Its viro diagram is

Unfortunately, this doesn't always work.

Example

Take $g=x^{4} y^{2}-x^{2} y^{4}-3 x^{2} y-9 x y^{2}+22$. Its viro diagram is

And here the zero set doesn't match.

Back to bounds

So we look for bounds again.

Back to bounds

So we look for bounds again.
Perrucci [3] found a way to bound compact components of 2-variate 4-nomials.

Basic idea: restrict polynomial to curve to get univariate polynomial:

Basic idea: restrict polynomial to curve to get univariate polynomial:

Basic idea: restrict polynomial to curve to get univariate polynomial:

Basic idea: restrict polynomial to curve to get univariate polynomial:

Using this method, we are working to improve the bound on 2-variate 5 -nomials to less than 5 .

Acknowledgments

Thanks to Dr. Rojas for guidance, background, and introducing this project.
Thanks to Korben Rusek for help; thanks to Daniel Perrucci, Frédérick Bihan and Frank Sottile, whose papers gave ideas for approaching this situation.
Thanks to Texas A\&M University for hosting this REU program.

References I

[1] Frédéric Bihan and Frank Sottile.
New fewnomial upper bounds from gale dual polynomial systems.
Moscow Mathematics Journal, 7(3):387-407, 2007.
[2] Askold Khovanskii.
A class of systems of transcendental equations.
Dokl. Akad. Nauk. SSSR, 255(4):804-807, 1980.
[3] Daniel Perrucci.
Some bounds for the number of components of real zero sets of sparse polynomials.
Discrete and Computational Geometry, 34(3):475-495, 2005.

