$\lambda\mathchar`-Permutations of Conditionally Divergent Series II$

Progress on Velleman's Problem

Speaker: Mamikon Gulian, Larson REU

July 27, 2011

Definitions

 $\sigma: \mathbf{N} \to \mathbf{N}$ is a $\lambda - permutation$ if

•
$$\forall \sum b_i$$
 convergent, $\sum b_{\sigma(i)}$ is convergent

▶
$$\exists \sum a_i$$
 divergent, with $\sum a_{\sigma(i)}$ convergent.

$$\iff$$
 in

•
$$\sigma([1,n]) = [c_1^n, d_1^n] \cup [c_2^n, d_2^n] \cup ... \cup [c_{b_n}^n, d_{b_n}^n]$$

 $b_n < C$ (bounded block number)

(ロ)、(型)、(E)、(E)、 E) の(の)

The set of all λ -permutations is denoted by Λ .

Velleman's Problem

Velleman (2006): Fix a conditionally divergent $\sum a_i$. Put

$$S = \{x \in R \mid \exists \sigma \in \Lambda \mid \sum a_{\sigma(i)} = x\}$$

Examples exist where $S = \mathbb{R}$ and $S = \emptyset$

A finite subsequence B of consecutive terms of {a_i} is a block.
If all terms of B have the same sign, B is a pure (positive or negative) block)

For B not pure, B is a generalized block.

• If $B = \{a_i, a_{i+1}, ..., a_{i+p}\}$ we define the *block sum* |B| of B by

$$|B| = a_i + a_{i+1} + \dots + a_{i+p}$$

Theorem A

Suppose $\sum a_i$ has ONE of the following properties

- There exists a sequence of disjoint blocks P_i of positive terms ("pure positive blocks") such that |P_i| > A > 0
- ► There exists a sequence of disjoint blocks N_i of negative terms ("pure negative blocks") such that |N_i| < B < 0</p>

 $(|P_i|$ denotes sum of terms in P_i) Then if S is not empty, $S = \mathbb{R}$.

Proof by Shifting Argument

If S is not empty, say $r \in \mathbb{R}$, then $\sum a_{\sigma(i)} = r$ for $\sigma \in \Lambda$.

To increase the limit, shift blocks to the beginning of series and subsitute with other blocks.

To decrease the limit, skip blocks at the beginning and substitute them for other blocks.

Drawbacks

- ► Existence of pure blocks are insufficient for classification (when is S = Ø, when is S = ℝ)
- Example: ∑ a_i conditionally divergent for which S = ℝ due to existence of pure blocks (say |P_i| = 1). Define new series ∑ b_i by inserting -1/2^k (k = 1, 2, ...) between each term of the P_i. To each σ ∈ Λ such that ∑ a_{σ(i)} = r there is a natural τ ∈ Λ

such that
$$\sum_{\tau(i)} a_{\tau(i)} = r - 1$$

$$\implies$$
 $S = \mathbb{R}$ for $\sum b_i$.

A finite subsequence B of consecutive terms of {a_i} is a block. (Sometimes "generalized", "impure" blocks). The terms of B need not have the same sign.

▶ If $B = \{a_i, a_{i+1}, ..., a_{i+p}\}$ we define the *block sum* |B| of B by

$$|B| = a_i + a_{i+1} + \dots + a_{i+p}$$

- Let S₊ be the set of all δ ≥ 0 such that there are infinitely many *disjoint* blocks B_i such that |B_i| ≥ δ,
- Define $\alpha = \sup S_+$
- Let S_− be the set of all δ ≤ 0 such that there are infinitely many disjoint blocks B_i such that |B_i| ≤ δ.

• Define
$$\beta = \inf S_{-}$$

"Unbalanced" Example

$$\alpha = 2, \beta = -1, S = \emptyset$$

Theorem B

 $\alpha + \beta = 0$ or else *S* is empty. Proof:

- ► Assume *S* is not empty: for some $\sigma \in \Lambda$, $\sum a_{\sigma(i)}$ converges.
- ▶ WLOG, take $\alpha + \beta > 0$. Take any δ such that, $\alpha + \beta > \delta > 0$
- For large enough n, the tail {a_i}[∞]_{i=n} contains no blocks with sum ≤ −α + δ < β. But it contains infinitely many blocks B_i with sum ≥ α − ^δ/₂.
- ► Hence the partial sums of the tail sequence successively get larger than k^δ/₂, where k is the number of B_i passed, so ∑ a_i = +∞

Proof continued

- ▶ Now write $\sigma([1, n]) = [p, q] \cup B_2 \cup ... \cup B_{b_n}$
- For large n, p = 1.

• As
$$n \to \infty$$
, $q \to \infty$.

•
$$\sum_{i=1}^{n} a_{\sigma(i)} = \sum_{i=1}^{q} a_i + \sum_{i=2}^{b_n} |B_i|$$

• Taking limits, $\lim \sum_{i=1}^{d_1^n} a_i = +\infty$ and $\lim \inf |B| = \beta$.

•
$$\sum_{i=1}^{\infty} a_{\sigma}(i) = +\infty$$
, a contradiction.

Three cases:

• $\alpha = 0 = \beta$ cannot occur, since $\sum a_i$ is not Cauchy.

•
$$\infty > \alpha = -\beta > 0$$
. (main effort)

Can we extend the shifting argument from the pure block case?

$$\blacktriangleright \ \infty = \alpha = -\beta$$

- Asyptotics, orders of growth of +,- blocks.
- Too hard.

Challenges with bounded α, β : Fractal Oscillations

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

A Disappointment

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ の々⊙

The End