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Preliminaries

L2(R) is the space of all functions from R→ C such that their L2

norm: ||f ||2 = (
∫
R |f (t)|2dt)1/2 <∞ is finite.

Definition

The Fourier Transform F : L2(R)→ L2(R) of a function f is
defined as

F(f )(ω) = f̂ (ω) =

∫
R
f (t)e−2πiωtdt.

Plancherel’s Theorem: ||f ||2 = ||f̂ ||2



Preliminaries continued

Discrete Setting:

Definition

Let x ∈ RN , i.e. x = (xt)N
1 = (x1, x2, . . . , xN). The Discrete

Fourier Transform (DFT) of x is given by:

Fx(ω) = x̂(ω) =
1√
N

N∑
t=1

xt · e−2πiωt/N , ω = 1, 2, . . . ,N.

Plancherel’s Theorem:
∑N

t=1 |xt |2 =
∑N

ω=1 |x̂ω|2.



Classical Uncertainty Principle

Let ∆f t =
(∫

R(t − t0)2|f (t)|2dt
)1/2 where t0 ∈ R.

Let ∆f ω =
(∫

R(ω − ω0)2|f̂ (ω)|2dω
)1/2

where ω0 ∈ R.

Theorem (Heisenberg’s Inequality)

If f ∈ L2(R) with ||f ||2 = 1, then

∆f t ·∆f ω ≥
1
4π

Quantum Mechanics: ∆f t = position "uncertainty",
∆f ω = momentum "uncertainty"



Uncertainty Principle of Donoho and Stark

Definition

A function f is ε-concentrated on a set T if

||f − χT f ||2 ≤ ε

where χT is the characteristic function of the set T.

Theorem (Donoho/Stark 1989)

Suppose f is εT -concentrated on T, and its Fourier transform f̂ is
εW - concentrated on a set W with ||f ||2 = 1. Then

m(T ) ·m(W ) ≥ (1− εT − εW )2.



Information Theory

Introduced by C.E. Shannon’s 1948 paper: "A Mathematical
Theory of Communication"

Sentence 1: “The sun will set in the west tomorrow"

Sentence 2: “There will be a solar eclipse tomorrow"

Which has more information?

Caveat- Received message: “WZHSLNRU?@TG"

Three Intuitive Postulates for Information:
1 If E ,F are events such that P(E ) ≤ P(F ), then I (E ) ≥ I (F ).
2 If E ,F are independent events, I (E ∩ F ) = I (E ) + I (F ).
3 For all events E, I (E ) ≥ 0.

(Shannon 1948) The only function that satisfies 1,2,3 is of the
form:

I (E ) = −Kloga(P(E ))

where a,K are positive constants.
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Information as a Random Variable

Consider a discrete random variable X : S → {x1, . . . , xn} ⊂ R with
associated probability distribution specified by pi = P(X = xi ).

Example: Let S = {heads, tails}. Then X : S → {0, 1} is a random
variable where X (heads) = 1 and X (tails) = 0 with associated
probabilities p0 = p1 = 1

2 .

Warning: X = 1 is commonly written instead of X (·) = 1.

Definition

The information of a random variable X is given by
I (X ) : {x1, . . . , xn} → R by I (X ) = − log2(P(X )). The units of
information with respect to log2 are called bits.



Entropy as a Measure of Uncertainty

Examples of Calculating Information of Events:
I(“coin landing heads")
= − log2(1/2) = 1 bit

I(“card being Ace of Spades")
= - log2( 1

52) ≈ 5.70bits

Definition (Shannon 1948)

The entropy of a random variable X is the expected value of I (X )
given by

H(X ) = E(I (X )) = −
n∑

j=1

pj log2(pj).

Figure: Entropy of a “Weighted"
Coin Flip



Hirschman Uncertainty Principle

Let xt , x̂ω ∈ RN such that ||x || = 1.

Let X ,Y be random variables who map into {1, 2, . . . ,N} with
associated probability distributions given by P(X = i) = |xi |2 and
P(Y = i) = |x̂i |2.

Theorem (Hirschman’s Uncertainty Principle (Dembo et al. 1991))

Let xt and x̂ω be a Fourier transform pair such that ||x || = 1. Then
defining random variables X ,Y as given above, we have

H(X ) + H(Y ) ≥ log2(N).



New Approach: Approximate Concentration of Entropy

Let xt and x̂ω be a Fourier transform pair in RN such that ||x || = 1
and X and Y be defined as before.

Let T ⊆ {1, . . . ,N}. Define H(X |T ) = −
∑

j∈T pj log2(pj).

Definition

X is ε-concentrated in entropy to a set T ⊆ {1, 2, . . . ,N} if

H(X )− H(X |T ) = −
∑
j /∈T

pj log2(pj) ≤ ε.

Question: Are there lower bounds for H(X |T ),H(Y |W ) that can be
established?



Numerical Simulations

H(X ) + H(Y ) = Sum of Entropies,
H(X |T ) + H(Y |W ) = Sum of Approximate Entropies

Figure: εT = εW = 1/10 Figure: εT = εW = 5



An Uncertainty Result for Approximate Concentration of
Entropy

Theorem

Let xt and x̂ω be a Fourier transform pair in RN such that ||x || = 1
and two random variables X ,Y who share the same range, where
P(X = i) = |xi |2 and P(Y = i) = |x̂i |2. Suppose X is
εT -concentrated in entropy to a set T , and Y is εW -concentrated
in entropy to a set W . Then we have

log2(N)− εT − εW ≤ H(X |T ) + H(Y |W ).



Density of the sets T and W

We define the density of T to be dT = NT
N where NT is the number

of non-zero entries in T. Similarly, we define the density of W,
dW = NW

N .



Results and Conjectures

Let X and Y be defined for the unit-normalized Fourier transform
pair x , x̂ as given before.

Theorem

Let X be εT -concentrated in entropy to a set T, Y be
εW -concentrated in entropy to a set W. Then for N ≥ 21+εT+εW ,

dTdW ≤ log2(N)− εT − εW ≤ H(X |T ) + H(Y |W ).

We also know that 1− εT − εW ≤ log2(N)− εT − εW . The
following conjecture is suggested by numerical simulations:

Conjecture

1− εT − εW ≤ dTdW .
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Appendix

Theorem (Heisenberg’s Inequality)

If f ∈ L2(R) with ||f ||2 = 1, then(∫
R

(t − t0)2|f (t)|2dt
)1/2

·
(∫

R
(ω − ω0)2|f̂ (ω)|2dω

)1/2

≥ 1
4π

Lemma

Let A,B be self-adjoint operators on a Hilbert space H. We define
the commutator of A, B to be [A,B] := AB − BA. Then we have
that

||(A− a)f || · ||(B − b)f || ≥ 1
2
|〈[A,B]f , f 〉|

for a, b ∈ R and f in the domain of AB ∩ BA.



Proof of Lemma

Proof.

|〈[A,B]f , f 〉| = |〈((A− a)(B − b)− (B − b)(A− a)) f , f 〉|

= |〈(B − b)f , (A− a)f 〉 − 〈(A− a)f , (B − b)f 〉|

≤ |〈(B − b)f , (A− a)f 〉|+ |〈(A− a)f , (B − b)f 〉|

≤ 2||(B − b)f || · ||(A− a)f ||

from which the lemma follows.



Proof of Heisenberg’s Inequality

With this lemma, we may continue with the proof of the theorem.
Let the operators A,B ∈ B(L2(R)) by

Af = tf (t),B =
1
2πi

f ′(t).

A,B are self-adjoint operators. By the lemma, we have then that

||(A− a)f || · ||(B − b)f || ≥ 1
2
|〈[A,B]f , f 〉|.

Observe that
1
2
|〈[A,B]f , f 〉| =

1
2
|
∫
R

1
2πi
|f (t)|2dt| = 1/4π.

Then,

||(B − b)f || = ||F(B − b)(f )|| =
(∫

R(ω − ω0)2|f̂ (ω)|2dω
)1/2

and

||(A− a)f || =
(∫

R(t − t0)2|f (t)|2dt
)1/2

. QED.


