Finite-Dimensional Frame Theory over Arbitrary Fields

$$
\text { Suren Jayasuriya }{ }^{1} \quad \text { Pedro Perez }{ }^{2}
$$

${ }^{1}$ University of Pittsburgh
${ }^{2}$ Columbus State University

REU/MCTP/UBM Summer Research Conference, Texas A \& M University, July 27, 2011

Background

Definition

A frame is a family of vectors $\mathcal{F}=\left\{f_{1}, \ldots, f_{k}\right\}$ in a Hilbert space \mathcal{H} such that there exists $0<A \leq B<\infty$ such that

$$
A\|x\|^{2} \leq \sum_{i=1}^{k}\left|\left\langle x, f_{i}\right\rangle\right|^{2} \leq B\|x\|^{2}
$$

If $A=B=1$, we say it is a Parseval frame.

Background

Definition

A frame is a family of vectors $\mathcal{F}=\left\{f_{1}, \ldots, f_{k}\right\}$ in a Hilbert space \mathcal{H} such that there exists $0<A \leq B<\infty$ such that

$$
A\|x\|^{2} \leq \sum_{i=1}^{k}\left|\left\langle x, f_{i}\right\rangle\right|^{2} \leq B\|x\|^{2}
$$

If $A=B=1$, we say it is a Parseval frame.
Reconstruction Formula: For a frame \mathcal{F}, there exists a set of vectors $\left\{g_{i}\right\}_{i=1}^{k}$ s.t. for all x in \mathcal{H},

$$
x=\sum_{i=1}^{k}\left\langle x, g_{i}\right\rangle f_{i}=\sum_{i=1}^{k}\left\langle x, f_{i}\right\rangle g_{i}
$$

We say $\left\{\mathrm{f}_{i}\right\}$ and $\left\{g_{i}\right\}$ are dual frames for \mathcal{H}.

Vector spaces over \mathbb{Z}_{2}

Dot product ceases to be a definite inner product in \mathbb{Z}_{2}^{n}
Example: $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right)=1+1=2 \equiv 0(\bmod 2)$.

Vector spaces over \mathbb{Z}_{2}

Dot product ceases to be a definite inner product in \mathbb{Z}_{2}^{n}
Example: $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right)=1+1=2 \equiv 0(\bmod 2)$.
Motivation: Establish a theory for frames without relying on definite inner products

Previous Work:
"Frame theory for binary vector spaces"- Bodmann et. al. (2009)
"Binary Frames" - Hotovy/Scholze/Larson (2010)

Indefinite Inner Product Spaces

Definition

$(V,\langle\cdot, \cdot\rangle)$ is an (indefinite) inner product space if $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{F}$ is a bilinear form (or sesquilinear if $\mathbb{F}=\mathbb{C}$).

Example:

The dot product is a bilinear map $\langle\cdot, \cdot\rangle: \mathbb{Z}_{2}^{n} \times \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$ given via

$$
\left\langle\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right),\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)\right\rangle=\sum_{i=1}^{n} a_{i} b_{i}
$$

Definition (Bodmann, et al. (2009))
A frame in a vector space V over a field \mathbb{F} is a spanning set of vectors for V.

Riesz Representation Theorem

Theorem (Hotovy/Scholze/Larson 2011)
Let V, K be vector spaces over \mathbb{Z}_{2} with a dual frame pair $\left\{x_{i}\right\}_{1}^{k},\left\{y_{i}\right\}_{1}^{k}$.
Then if $\phi: V \rightarrow K$ is a linear functional, then there exists a unique $z \in V$ such that $\phi(x)=\langle x, z\rangle$ for all $x \in V$.

Corollary (Existence of Adjoint)
There exists $\phi^{*}: K \rightarrow V$ such that $\langle\phi(x), y\rangle=\left\langle x, \phi^{*}(y)\right\rangle$ for all $x \in V$, $y \in K$. If $\phi=\phi^{*}$, we say ϕ is a self-adjoint operator.

Riesz Representation Theorem

Theorem (Hotovy/Scholze/Larson 2011)
Let V, K be vector spaces over \mathbb{Z}_{2} with a dual frame pair $\left\{x_{i}\right\}_{1}^{k},\left\{y_{i}\right\}_{1}^{k}$.
Then if $\phi: V \rightarrow K$ is a linear functional, then there exists a unique $z \in V$ such that $\phi(x)=\langle x, z\rangle$ for all $x \in V$.

Corollary (Existence of Adjoint)
There exists $\phi^{*}: K \rightarrow V$ such that $\langle\phi(x), y\rangle=\left\langle x, \phi^{*}(y)\right\rangle$ for all $x \in V$, $y \in K$. If $\phi=\phi^{*}$, we say ϕ is a self-adjoint operator.

Note, not all subspaces of \mathbb{Z}_{2}^{n} have dual frames:
Let $V=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right)\right\}$.
. Note that the dot product of any two
vectors in V is zero, so there is no Riesz Representation theorem.

Analysis Operator

Definition (Hilbert space)

The analysis operator for a frame $\left\{f_{i}\right\}_{i=1}^{k}$ in a Hilbert space \mathcal{H} is the map $\Theta: \mathcal{H} \rightarrow \mathbb{C}^{k}$ defined by $\Theta(x)=\left(\left\langle x, f_{1}\right\rangle, \ldots,\left\langle x, f_{k}\right\rangle\right)^{T}$.

Analysis Operator

Definition (Hilbert space)

The analysis operator for a frame $\left\{f_{i}\right\}_{i=1}^{k}$ in a Hilbert space \mathcal{H} is the map $\Theta: \mathcal{H} \rightarrow \mathbb{C}^{k}$ defined by $\Theta(x)=\left(\left\langle x, f_{1}\right\rangle, \ldots,\left\langle x, f_{k}\right\rangle\right)^{T}$.

In a general vector space setting, what is the connection between the analysis operator and frames?

Definition

Let V be a finite-dimensional vector space over \mathbb{F}. We say the linear functionals $\left\{\phi_{1}, \ldots, \phi_{k}\right\}$ separate V if $\Theta(x)=\left(\phi_{1}(x), \ldots, \phi_{k}(x)\right)^{T}$ is injective.

A Reconstruction Formula

Theorem
Let V be a n-dimensional space over a field \mathbb{F}. Let $\left\{\phi_{1}, \ldots, \phi_{k}\right\}$ separate V, i.e. Θ is injective. Then there exists a set of vectors $\left\{X_{1}, \ldots, X_{k}\right\} \subset V$ such that for all $x \in V$ we have that

$$
x=\sum_{i=1}^{k} \overline{\phi_{i}(x)} X_{i}
$$

Analysis Spaces

Definition

A frame $\left\{x_{i}\right\}_{i=1}^{k}$ is an analysis frame for a vector space V if $\Theta: V \rightarrow \mathbb{F}^{k}$ defined by

$$
\Theta(x)=\left(\left\langle x, x_{1}\right\rangle,\left\langle x, x_{2}\right\rangle, \ldots,\left\langle x, x_{k}\right\rangle\right)^{T}
$$

is injective where $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{F}$ is an indefinite inner product.

Definition

($V,\langle\cdot, \cdot\rangle$) is called an analysis space if it admits an analysis frame.

We want to classify all such analysis spaces $(V,\langle\cdot, \cdot\rangle)$ over a field \mathbb{F}

Results on Analysis Spaces

Theorem

Let $\left\{x_{i}\right\}_{i=1}^{k}$ be an analysis frame for a n-dimensional vector space V. Let $E=\operatorname{Ran}(\Theta) \subseteq \mathbb{F}^{k}$. Then there exists a dual frame $\left\{y_{i}\right\}_{i=1}^{k}$ such that for all $x \in V$,

$$
x=\sum_{i=1}^{k}\left\langle x, x_{i}\right\rangle y_{i}=\sum_{i=1}^{k}\left\langle x, y_{i}\right\rangle x_{i}
$$

where

$$
x_{i}=\Theta^{*}\left(e_{i}\right), \quad y_{i}=\left.\Theta^{-1}\right|_{E} P_{E}\left(e_{i}\right)
$$

where $\left\{e_{i}\right\}$ is the standard orthonormal basis for $\mathbb{F}^{k},\left.\Theta^{-1}\right|_{E}$ is the invertible map from E back to V, and $\left.P\right|_{E}$ is an idempotent projection (i.e. not necessarily self-adjoint) onto E.

$E=\operatorname{Ran}(\Theta)$ admits a Parseval frame

Suppose we have an analysis frame $\left\{x_{i}\right\}_{i=1}^{k}$ for V. Suppose in addition, there exists a $\left\{z_{i}\right\}_{i=1}^{k} \subset V$ such that $\left\{\Theta\left(z_{i}\right)\right\}_{i=1}^{k}$ is a Parseval frame for $E=\operatorname{Ran}(\Theta)$, i.e. we have a reconstruction formula given for all $u \in E$ by:

$$
u=\sum_{i=1}^{k}\left\langle u, \Theta\left(z_{i}\right)\right\rangle \Theta\left(z_{i}\right)
$$

Then we have that

$$
x_{i}=\Theta^{*}\left(e_{i}\right)
$$

and

$$
y_{i}=\sum_{j=1}^{k}\left\langle e_{i}, \Theta\left(z_{j}\right)\right\rangle z_{j}
$$

where $e_{i}, i=1, \ldots, k$ is the standard basis for \mathbb{F}^{k}.

ZIP(V) and Analysis Spaces

We introduce the following subspace of V :

Definition

The zero inner product subspace of V is given by:

$$
Z I P(V):=\{x \in V \mid\langle x, y\rangle=0, \quad \forall y \in V\} .
$$

Example: Let $V=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right)\right\}$. Then $\operatorname{ZIP}(V)=V$.
We formulate a useful characterization of analysis spaces:
Lemma
$(V,\langle\cdot, \cdot\rangle)$ is an analysis space if and only if $\operatorname{ZIP}(V)=\{0\}$.

Equivalent Properties of Analysis Spaces

Theorem
Let $(V,\langle\cdot, \cdot\rangle)$ be an analysis space. Then the following are equivalent:
(1) V has a Riesz Representation theorem
(2) V has a dual basis pair
(3) All frames in V are analysis frames
(9) V has at least one analysis frame
(6) $\operatorname{ZIP}(V)=\{0\}$

Corollary
If $(V,\langle\cdot, \cdot\rangle)$ is a definite inner product space, then it is an analysis space.

Vector Space Decomposition

Theorem

Let V be a finite-dimensional vector space over \mathbb{F}. Then V can be written as the algebraic direct sum of an analysis space E and the space ZIP(V), i.e.

$$
V=(E \oplus \operatorname{ZIP}(V),\langle\cdot, \cdot\rangle)=\left(E,\langle\cdot, \cdot\rangle_{E}\right) \oplus\left(Z I P(V),\langle\cdot, \cdot\rangle_{Z I P(V)}\right)
$$

where

$$
\left\langle\left(e_{1}, z_{1}\right),\left(e_{2}, z_{2}\right)\right\rangle=\left\langle e_{1}, e_{2}\right\rangle_{E}+\left\langle z_{1}, z_{2}\right\rangle_{Z I P(V)}
$$

for $e_{1}, e_{2} \in E, \quad z_{1}, z_{2} \in \operatorname{ZIP}(V)$.

Corollary
$V / Z I P(V)$ is unitarily equivalent to E, i.e. there exists an isomorphism $U: V / Z I P(V) \rightarrow E$ such that $\left\langle w_{1}, w_{2}\right\rangle=\left\langle U w_{1}, U w_{2}\right\rangle$ for all $w_{1}, w_{2} \in V / Z I P(V)$.

A Finer Vector Space Decomposition

Let $V=E \oplus \operatorname{ZIP}(V)$ where E is an analysis space.
Definition
Let E be an analysis space as given above. Let

$$
Z_{0}:=\{x \in E \mid\langle x, x\rangle=0 \text { and }\langle x, y\rangle+\langle y, x\rangle=0, \quad \forall y \in E\} .
$$

Theorem
Let V finite-dimensional vector space over \mathbb{F} where $\mathbb{F} \neq \mathbb{C}$. Then

$$
V=E^{\prime}+Z_{0} \dot{+} Z I P(V)
$$

where Z_{0} and $\operatorname{ZIP}(V)$ are defined as before and E^{\prime} is an analysis space.
Note that $\langle\cdot, \cdot\rangle_{V}$ restricted to the analysis space E^{\prime} becomes a definite inner product on E^{\prime}.

References

(1) Bernhard G. Bodmann, My Le, Matthew Tobin, Letty Reza and Mark Tomforde, Frame theory for binary vector spaces, Involve 2 589-602 (2009)
(2) Hotovy, R., Scholze, S., Larson, D. Binary Frames, Unpublished REU notes, 2011.

Thanks

Thanks to Dr. Larson, Dr. Yunus Zeytuncu, and Stephen Rowe for their advice and guidance as well as the Math REU program at Texas A \& M University for this opportunity

This work is funded by NSF grant 0850470, "REU Site: Undergraduate Research in Mathematical Sciences and its Applications."

