Finite-Dimensional Frame Theory over Arbitrary Fields

Suren Jayasuriya¹ Pedro Perez²

¹University of Pittsburgh

²Columbus State University

REU/MCTP/UBM Summer Research Conference, Texas A & M University, July 27, 2011

Background

Definition

A frame is a family of vectors $\mathcal{F} = \{f_1, \dots, f_k\}$ in a Hilbert space \mathcal{H} such that there exists $0 < A \leq B < \infty$ such that

$$A||x||^2 \leq \sum_{i=1}^k |\langle x, f_i \rangle|^2 \leq B||x||^2.$$

If A = B = 1, we say it is a Parseval frame.

Background

Definition

A frame is a family of vectors $\mathcal{F} = \{f_1, \dots, f_k\}$ in a Hilbert space \mathcal{H} such that there exists $0 < A \leq B < \infty$ such that

$$A||x||^2 \leq \sum_{i=1}^k |\langle x, f_i \rangle|^2 \leq B||x||^2.$$

If A = B = 1, we say it is a Parseval frame.

Reconstruction Formula: For a frame \mathcal{F} , there exists a set of vectors $\{g_i\}_{i=1}^k$ s.t. for all x in \mathcal{H} ,

$$x = \sum_{i=1}^{k} \langle x, g_i \rangle f_i = \sum_{i=1}^{k} \langle x, f_i \rangle g_i.$$

We say $\{f_i\}$ and $\{g_i\}$ are dual frames for \mathcal{H} .

Dot product ceases to be a definite inner product in \mathbb{Z}_2^n

Example:
$$\begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} \cdot \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} = 1 + 1 = 2 \equiv 0 \pmod{2}.$$

Dot product ceases to be a definite inner product in \mathbb{Z}_2^n

Example:
$$\begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} \cdot \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} = 1 + 1 = 2 \equiv 0 \pmod{2}.$$

Motivation: Establish a theory for frames without relying on definite inner products

Previous Work:

"Frame theory for binary vector spaces"- Bodmann et. al. (2009) "Binary Frames" - Hotovy/Scholze/Larson (2010)

Indefinite Inner Product Spaces

Definition

 $(V, \langle \cdot, \cdot \rangle)$ is an (indefinite) inner product space if $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ is a bilinear form (or sesquilinear if $\mathbb{F} = \mathbb{C}$).

Example:

The dot product is a bilinear map $\langle \cdot, \cdot \rangle : \mathbb{Z}_2^n \times \mathbb{Z}_2^n \to \mathbb{Z}_2$ given via

$$\left\langle \left(\begin{array}{c} a_1\\ \vdots\\ a_n \end{array} \right), \left(\begin{array}{c} b_1\\ \vdots\\ b_n \end{array} \right) \right\rangle = \sum_{i=1}^n a_i b_i.$$

Definition (Bodmann, et al. (2009))

A frame in a vector space V over a field \mathbb{F} is a spanning set of vectors for V.

Riesz Representation Theorem

Theorem (Hotovy/Scholze/Larson 2011)

Let V, K be vector spaces over \mathbb{Z}_2 with a dual frame pair $\{x_i\}_1^k$, $\{y_i\}_1^k$. Then if $\phi : V \to K$ is a linear functional, then there exists a unique $z \in V$ such that $\phi(x) = \langle x, z \rangle$ for all $x \in V$.

Corollary (Existence of Adjoint)

There exists $\phi^* : K \to V$ such that $\langle \phi(x), y \rangle = \langle x, \phi^*(y) \rangle$ for all $x \in V$, $y \in K$. If $\phi = \phi^*$, we say ϕ is a self-adjoint operator.

Riesz Representation Theorem

Theorem (Hotovy/Scholze/Larson 2011)

Let V, K be vector spaces over \mathbb{Z}_2 with a dual frame pair $\{x_i\}_1^k$, $\{y_i\}_1^k$. Then if $\phi : V \to K$ is a linear functional, then there exists a unique $z \in V$ such that $\phi(x) = \langle x, z \rangle$ for all $x \in V$.

Corollary (Existence of Adjoint)

There exists $\phi^* : K \to V$ such that $\langle \phi(x), y \rangle = \langle x, \phi^*(y) \rangle$ for all $x \in V$, $y \in K$. If $\phi = \phi^*$, we say ϕ is a self-adjoint operator.

Note, not all subspaces of \mathbb{Z}_2^n have dual frames:

Let
$$V = \operatorname{span}\left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} \right\}$$
. Note that the dot product of any two

vectors in V is zero, so there is no Riesz Representation theorem.

Definition (Hilbert space)

The analysis operator for a frame $\{f_i\}_{i=1}^k$ in a Hilbert space \mathcal{H} is the map $\Theta : \mathcal{H} \to \mathbb{C}^k$ defined by $\Theta(x) = (\langle x, f_1 \rangle, \dots, \langle x, f_k \rangle)^T$.

Definition (Hilbert space)

The analysis operator for a frame $\{f_i\}_{i=1}^k$ in a Hilbert space \mathcal{H} is the map $\Theta: \mathcal{H} \to \mathbb{C}^k$ defined by $\Theta(x) = (\langle x, f_1 \rangle, \dots, \langle x, f_k \rangle)^T$.

In a general vector space setting, what is the connection between the analysis operator and frames?

Definition

Let V be a finite-dimensional vector space over \mathbb{F} . We say the linear functionals $\{\phi_1, \ldots, \phi_k\}$ separate V if $\Theta(x) = (\phi_1(x), \ldots, \phi_k(x))^T$ is injective.

Theorem

Let V be a n-dimensional space over a field \mathbb{F} . Let $\{\phi_1, \ldots, \phi_k\}$ separate V, *i.e.* Θ is injective. Then there exists a set of vectors $\{X_1, \ldots, X_k\} \subset V$ such that for all $x \in V$ we have that

$$x=\sum_{i=1}^k\overline{\phi_i(x)}X_i.$$

Definition

A frame $\{x_i\}_{i=1}^k$ is an analysis frame for a vector space V if $\Theta: V \to \mathbb{F}^k$ defined by

$$\Theta(x) = (\langle x, x_1 \rangle, \langle x, x_2 \rangle, \dots, \langle x, x_k \rangle)^T$$

is injective where $\langle\cdot,\cdot\rangle: V\times V\to \mathbb{F}$ is an indefinite inner product.

Definition

 $(V, \langle \cdot, \cdot \rangle)$ is called an analysis space if it admits an analysis frame.

We want to classify all such analysis spaces (V, $\langle \cdot, \cdot
angle$) over a field $\mathbb F$

Results on Analysis Spaces

Theorem

Let $\{x_i\}_{i=1}^k$ be an analysis frame for a n-dimensional vector space V. Let $E = Ran(\Theta) \subseteq \mathbb{F}^k$. Then there exists a dual frame $\{y_i\}_{i=1}^k$ such that for all $x \in V$,

$$x = \sum_{i=1}^{k} \langle x, x_i \rangle y_i = \sum_{i=1}^{k} \langle x, y_i \rangle x_i$$

where

$$x_i = \Theta^*(e_i), \quad y_i = \Theta^{-1}|_E P_E(e_i)$$

where $\{e_i\}$ is the standard orthonormal basis for \mathbb{F}^k , $\Theta^{-1}|_E$ is the invertible map from E back to V, and $P|_E$ is an idempotent projection (i.e. not necessarily self-adjoint) onto E.

$E = Ran(\Theta)$ admits a Parseval frame

Suppose we have an analysis frame $\{x_i\}_{i=1}^k$ for V. Suppose in addition, there exists a $\{z_i\}_{i=1}^k \subset V$ such that $\{\Theta(z_i)\}_{i=1}^k$ is a Parseval frame for $E = Ran(\Theta)$, i.e. we have a reconstruction formula given for all $u \in E$ by:

$$u = \sum_{i=1}^{k} \langle u, \Theta(z_i) \rangle \Theta(z_i)$$

Then we have that

$$x_i = \Theta^*(e_i)$$

and

$$y_i = \sum_{j=1}^k \langle e_i, \Theta(z_j)
angle z_j$$

where $e_i, i = 1, ..., k$ is the standard basis for \mathbb{F}^k .

$\mathsf{ZIP}(\mathsf{V})$ and Analysis Spaces

We introduce the following subspace of V:

Definition

The zero inner product subspace of V is given by:

$$ZIP(V) := \{x \in V | \langle x, y \rangle = 0, \forall y \in V\}.$$

Example: Let
$$V = \operatorname{span} \left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} \right\}$$
. Then $ZIP(V) = V$.

We formulate a useful characterization of analysis spaces:

Lemma

$$(V, \langle \cdot, \cdot \rangle)$$
 is an analysis space if and only if $ZIP(V) = \{0\}$.

Equivalent Properties of Analysis Spaces

Theorem

Let $(V, \langle \cdot, \cdot \rangle)$ be an analysis space. Then the following are equivalent:

- V has a Riesz Representation theorem
- V has a dual basis pair
- 3 All frames in V are analysis frames
- V has at least one analysis frame

5 $ZIP(V) = \{0\}$

Corollary

If $(V, \langle \cdot, \cdot \rangle)$ is a definite inner product space, then it is an analysis space.

Vector Space Decomposition

Theorem

Let V be a finite-dimensional vector space over \mathbb{F} . Then V can be written as the algebraic direct sum of an analysis space E and the space ZIP(V), i.e.

$$\mathscr{V} = (E \oplus ZIP(V), \langle \cdot, \cdot \rangle) = (E, \langle \cdot, \cdot \rangle_E) \oplus (ZIP(V), \langle \cdot, \cdot \rangle_{ZIP(V)})$$

where

$$\langle (e_1, z_1), (e_2, z_2) \rangle = \langle e_1, e_2 \rangle_E + \langle z_1, z_2 \rangle_{ZIP(V)}$$

for $e_1, e_2 \in E, \ z_1, z_2 \in ZIP(V).$

Corollary

V/ZIP(V) is unitarily equivalent to E, i.e. there exists an isomorphism $U: V/ZIP(V) \rightarrow E$ such that $\langle w_1, w_2 \rangle = \langle Uw_1, Uw_2 \rangle$ for all $w_1, w_2 \in V/ZIP(V)$.

A Finer Vector Space Decomposition

Let $V = E \oplus ZIP(V)$ where E is an analysis space.

Definition

Let E be an analysis space as given above. Let

$$Z_0 := \{ x \in E \mid \langle x, x \rangle = 0 \text{ and } \langle x, y \rangle + \langle y, x \rangle = 0, \ \forall y \in E \}.$$

Theorem

Let V finite-dimensional vector space over \mathbb{F} where $\mathbb{F} \neq \mathbb{C}$. Then

$$V = E' + Z_0 + ZIP(V)$$

where Z_0 and ZIP(V) are defined as before and E' is an analysis space.

Note that $\langle \cdot, \cdot \rangle_V$ restricted to the analysis space E' becomes a definite inner product on E'.

- Bernhard G. Bodmann, My Le, Matthew Tobin, Letty Reza and Mark Tomforde, Frame theory for binary vector spaces, Involve 2 589-602 (2009)
- Hotovy, R., Scholze, S., Larson, D. Binary Frames, Unpublished REU notes, 2011.

Thanks to Dr. Larson, Dr. Yunus Zeytuncu, and Stephen Rowe for their advice and guidance as well as the Math REU program at Texas A & M University for this opportunity

This work is funded by NSF grant 0850470, "REU Site: Undergraduate Research in Mathematical Sciences and its Applications."