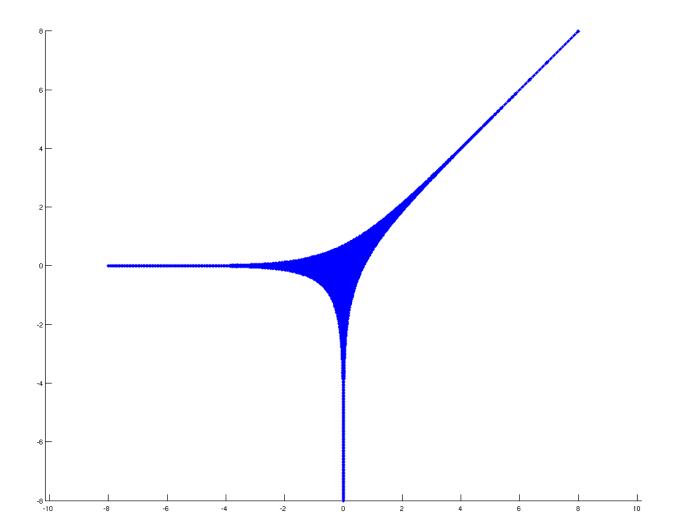
Amoebas and their Tropical Varieties Timothy Jewell J. Maurice Rojas, Advisor

What is an Amoeba?

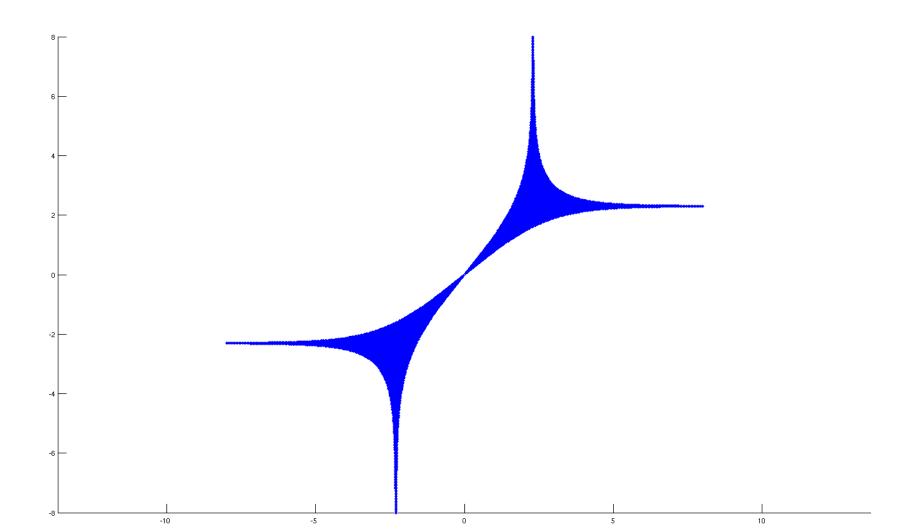
• For any polynomial *f* in two variables:

Amoeba(f) := { (log |x_1|, log |x_2|) | $f(x_1, x_2) = 0$ and $x \in (\mathbb{C}^*)^2$ }

 $f(x_1, x_2) = 1 + x_1 + x_2$



$f(x_1, x_2) = 1 + 10x_1 + 10x_2 + x_1x_2$



$f(x_1, x_2) = 1 + x_1 + x_2 + x_1 x_2$

Π

5

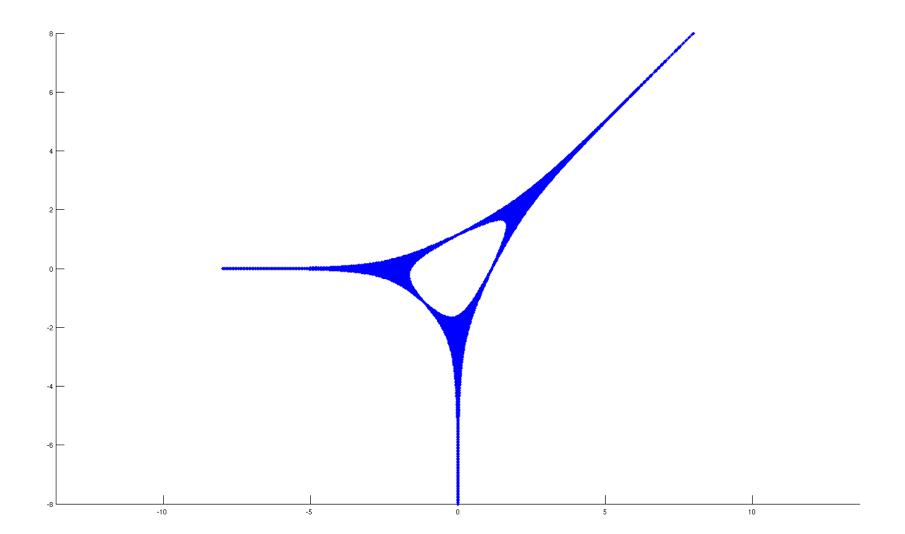
-10

-5

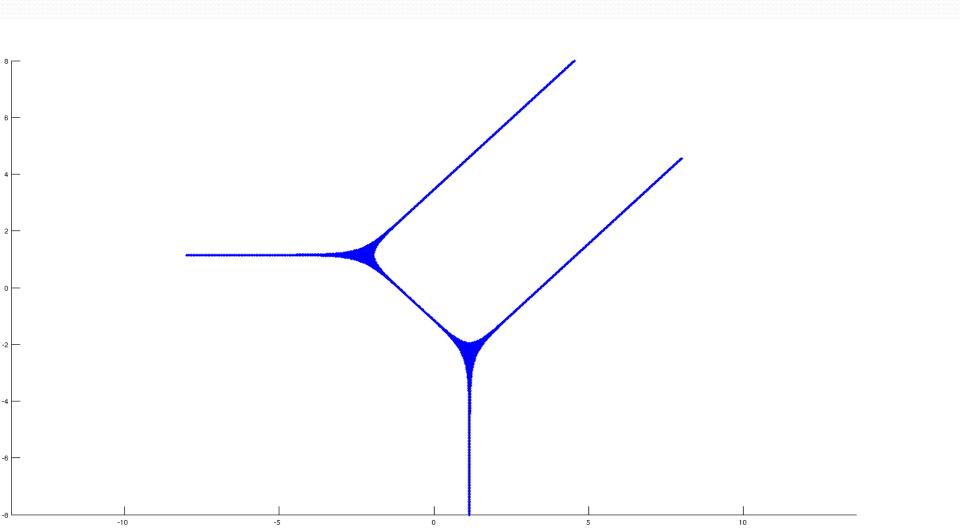
$= (1+x_1)(1+x_2)$

10

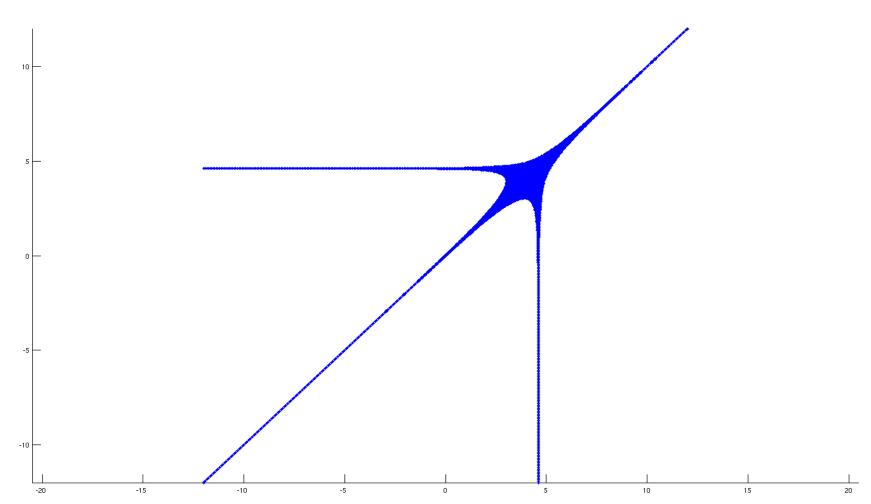
$f(x_1, x_2) = x_1^3 + x_2^3 + 10x_1x_2 + 1$



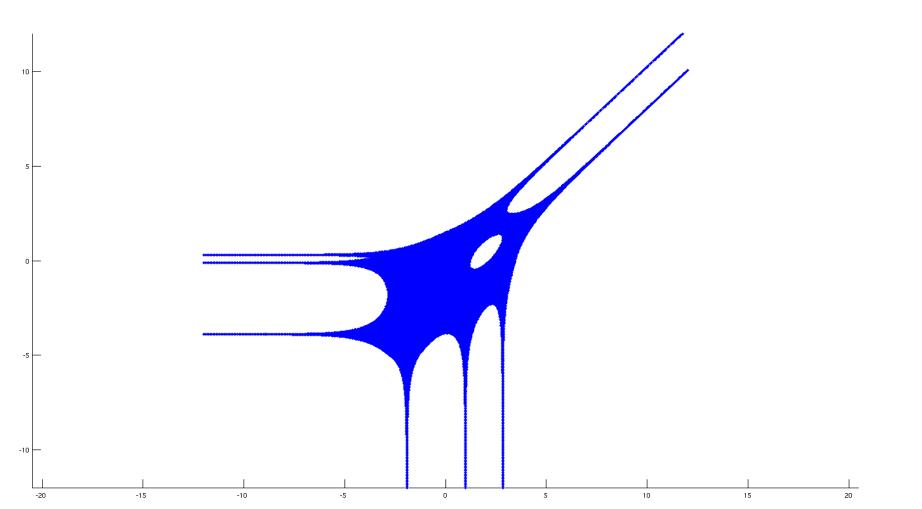
$f(x_1, x_2) = x_1^4 + x_2^4 + 1000x_1^2x_2^2 + 100$



$f(x_1, x_2) = x_1^2 + x_2^2 + 100x_1 + 100x_2$



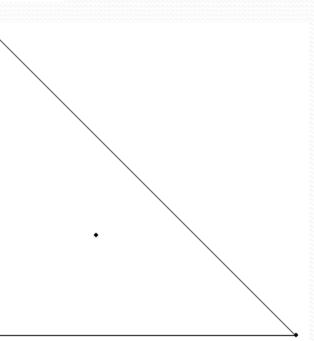
$f(x_1, x_2) = x_1^4 + x_1^3 x_2 + 50x_1^2 x_2^2 + 40x_1 x_2^3 + 30x_2^4 + 20x_1^3 + 460x_1^2 x_2 + 480x_1 x_2^2 + 10x_2^3 + 50x_1^2 - 500x_1 x_2 + 40x_2^2 + 10x_1 + 50x_2 + 1$



• For $f(x) = \sum_{i=1}^{t} c_i x^{a_i}$ where $a_1, \dots, a_t \in \mathbb{Z}^2$:

Newt(f) is the convex hull of $\{a_1, \ldots, a_t\}$

$$f(x_1, x_2) = x_1^3 + x_2^3 + 10x_1x_2 + 1$$



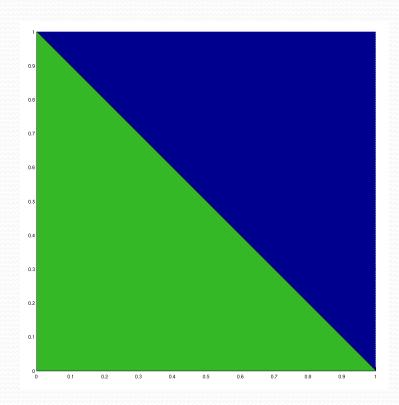
Liftings • For $f(x) = \sum_{i=1}^{t} c_i x^{a_i}$ where $a_1, \ldots, a_t \in \mathbb{Z}^2$: ArchNewt(*f*) is the convex hull of $\{(a_i, -\log |c_i|)\}_{i \in \{1, \dots, t\}}$ -0.4 -0.6 -0.8 $f(x_1, x_2) = x_1^3 + x_2^3 + 10x_1x_2 + 1$ 3 2.5 1.5 0.5

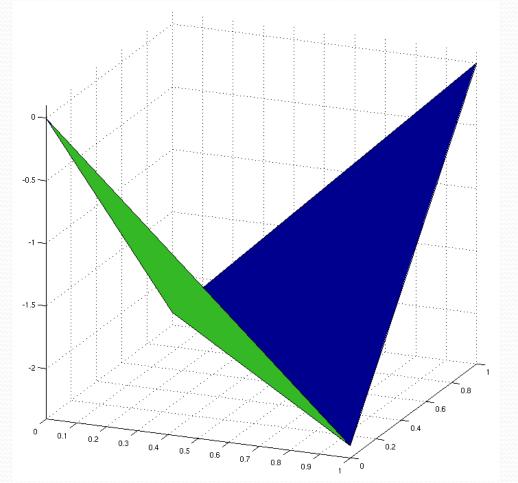
Avendaño's Theorem

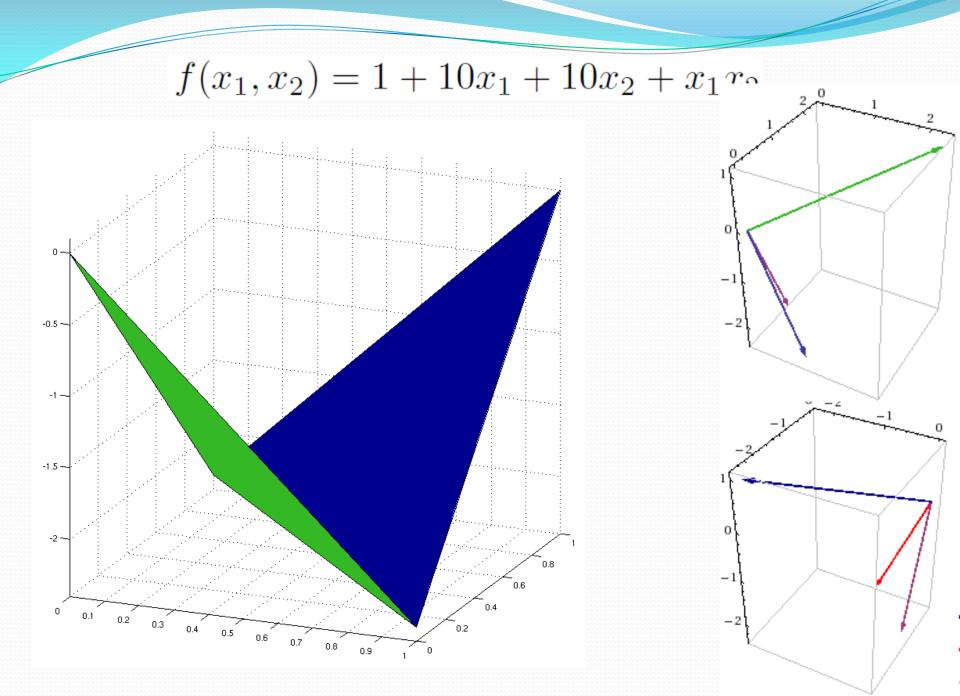
- Let Trop(f) denote the intersection of the inner normal fan of ArchNewt(f) with the hyperplane {x_{n+1}=1}
- The Theorem:

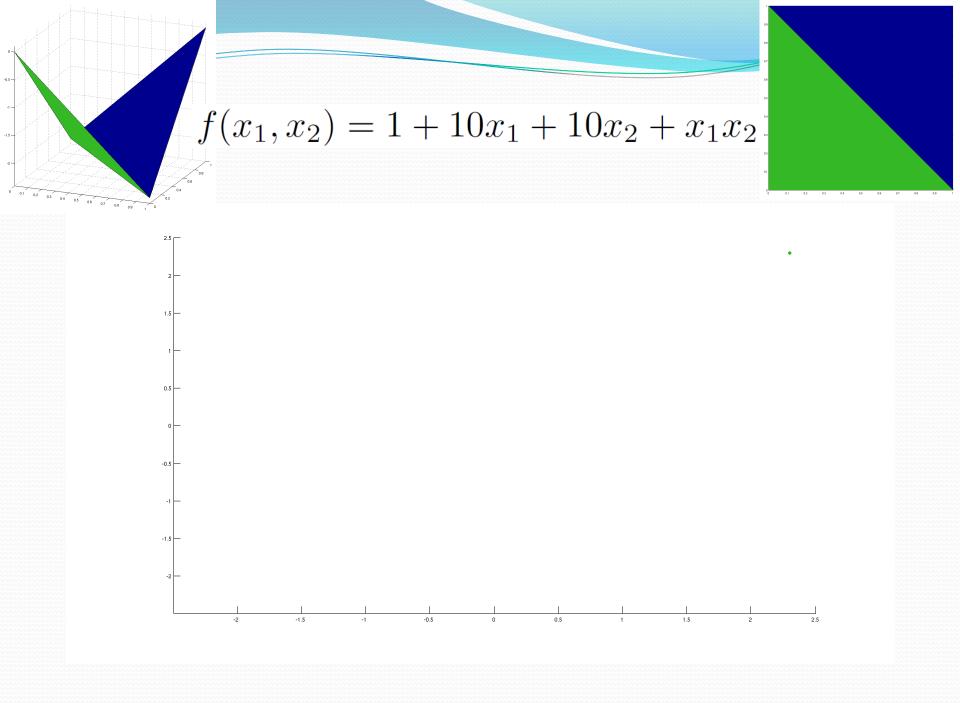
 $\Delta(-\operatorname{Amoeba}(f),\operatorname{Trop}(f)) \leq \log(t-1)$

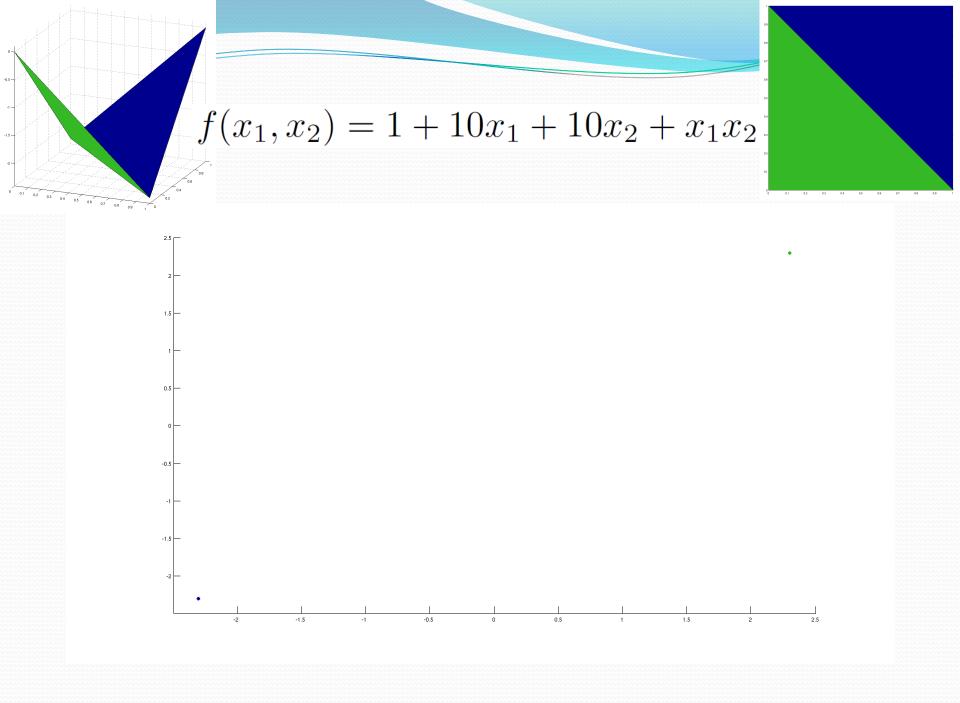
An Example: $f(x_1, x_2) = 1 + 10x_1 + 10x_2 + x_1x_2$

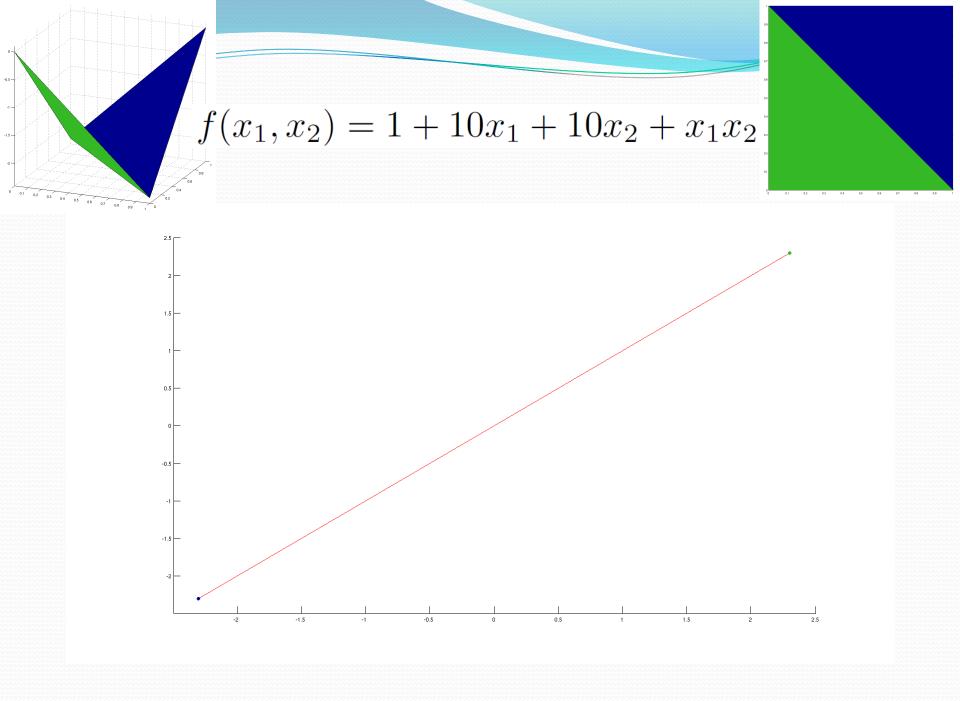


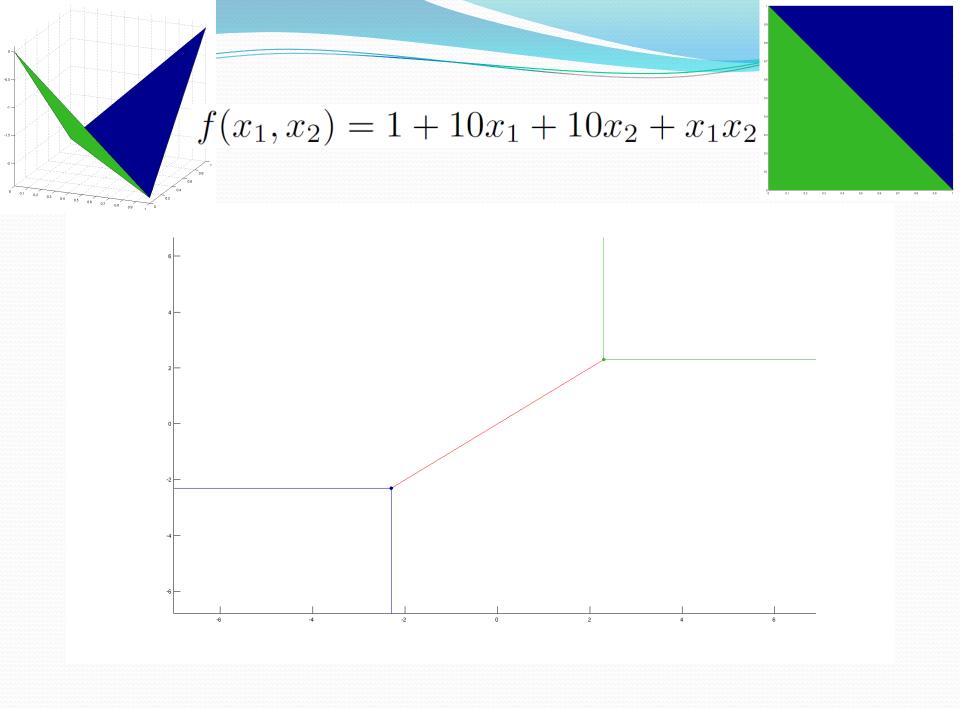


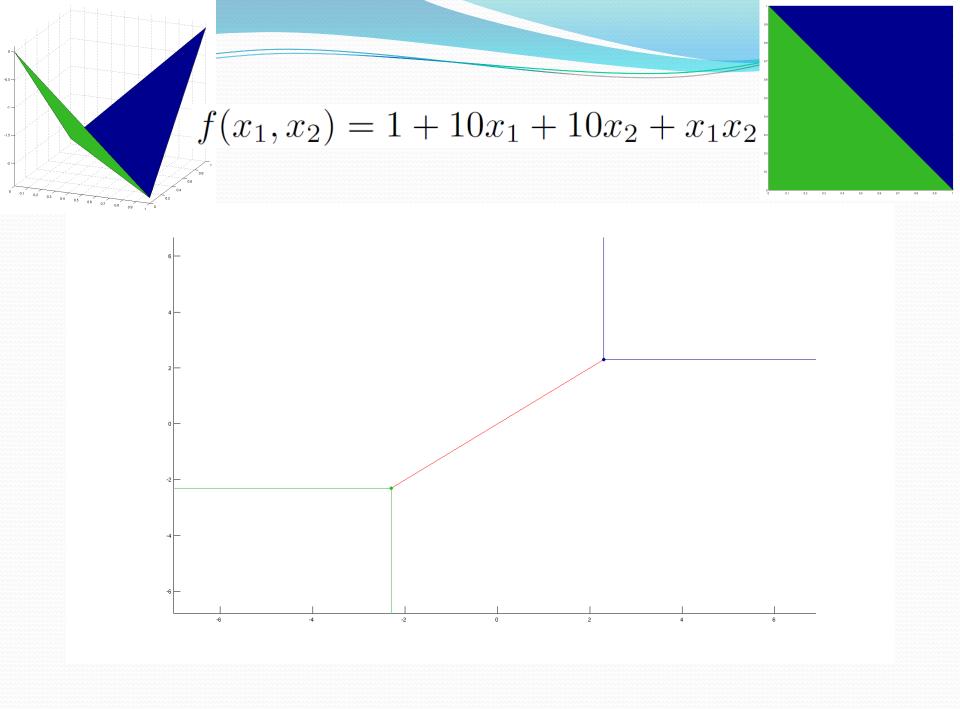


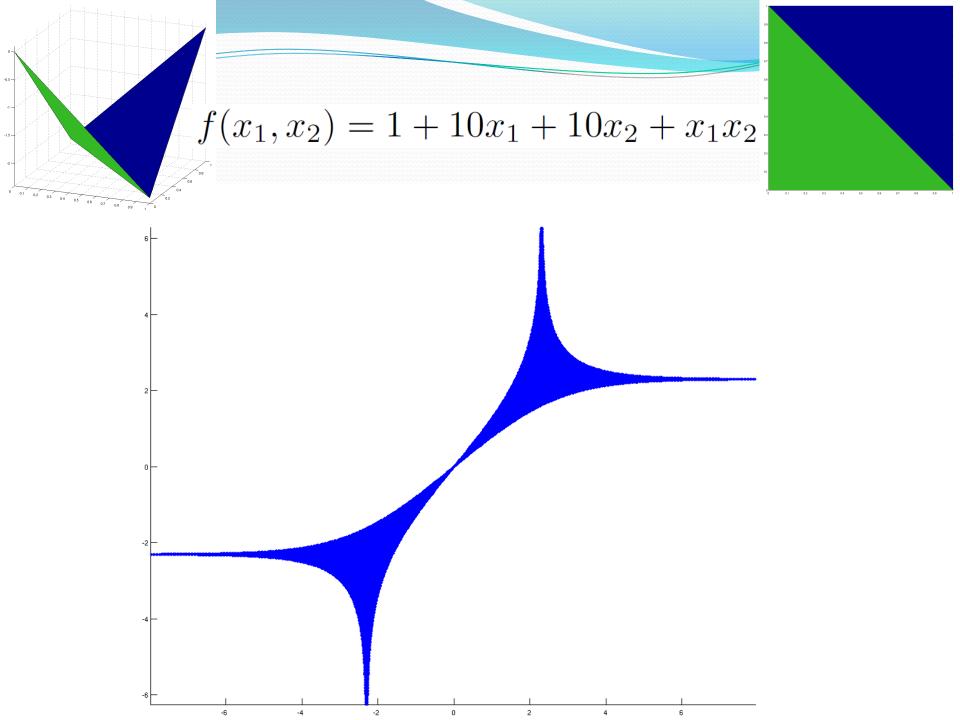


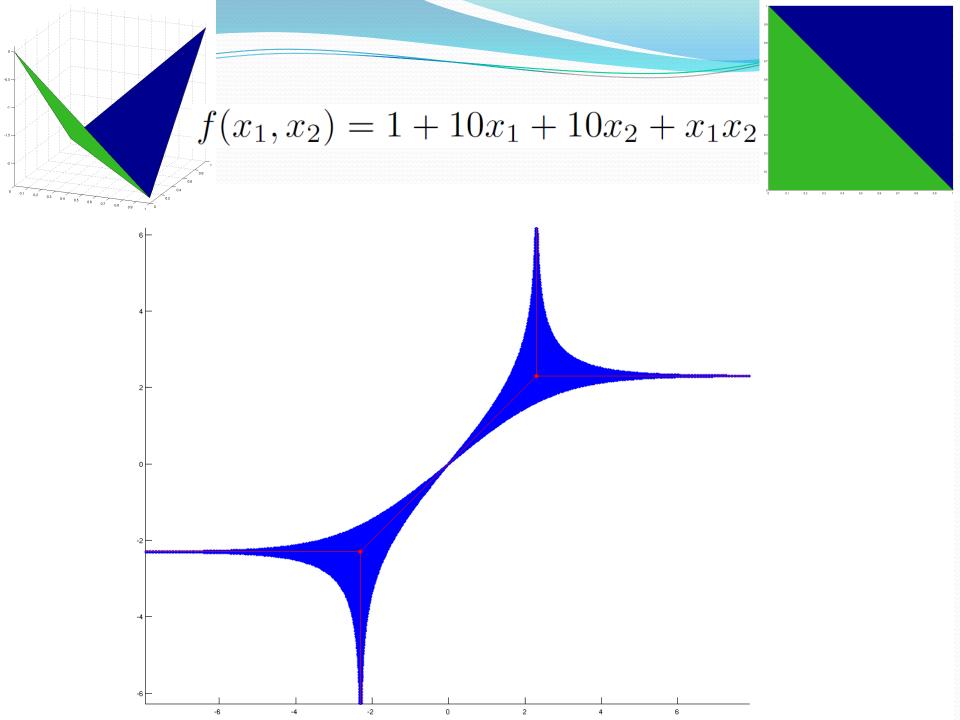




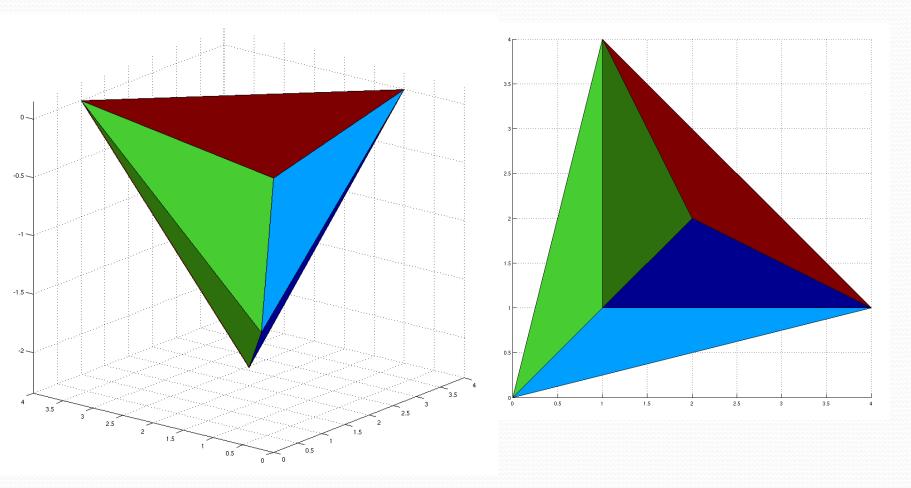


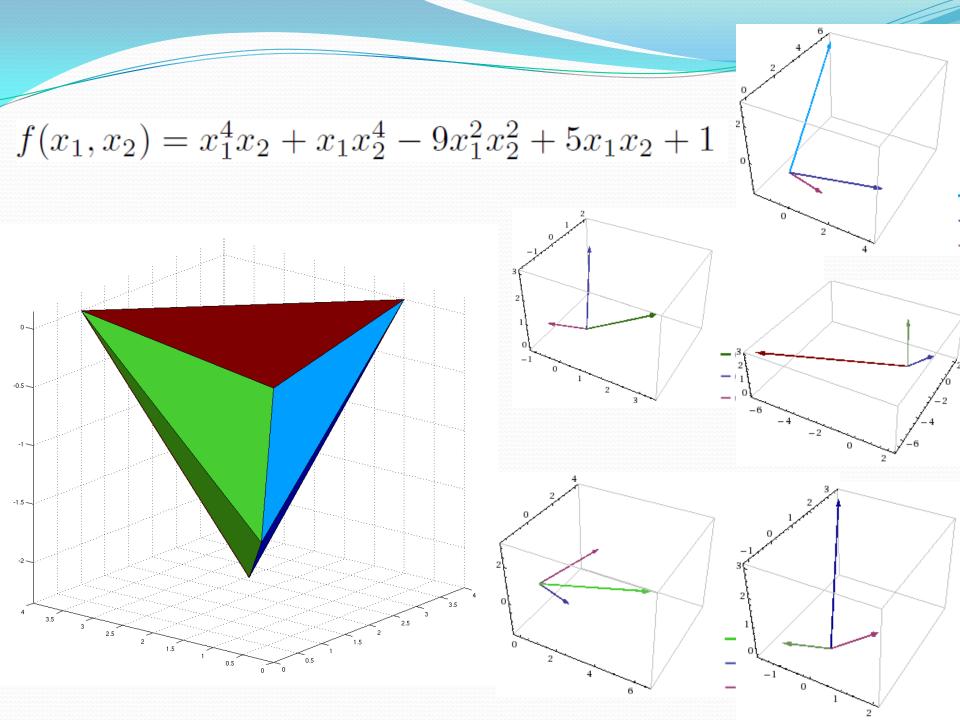


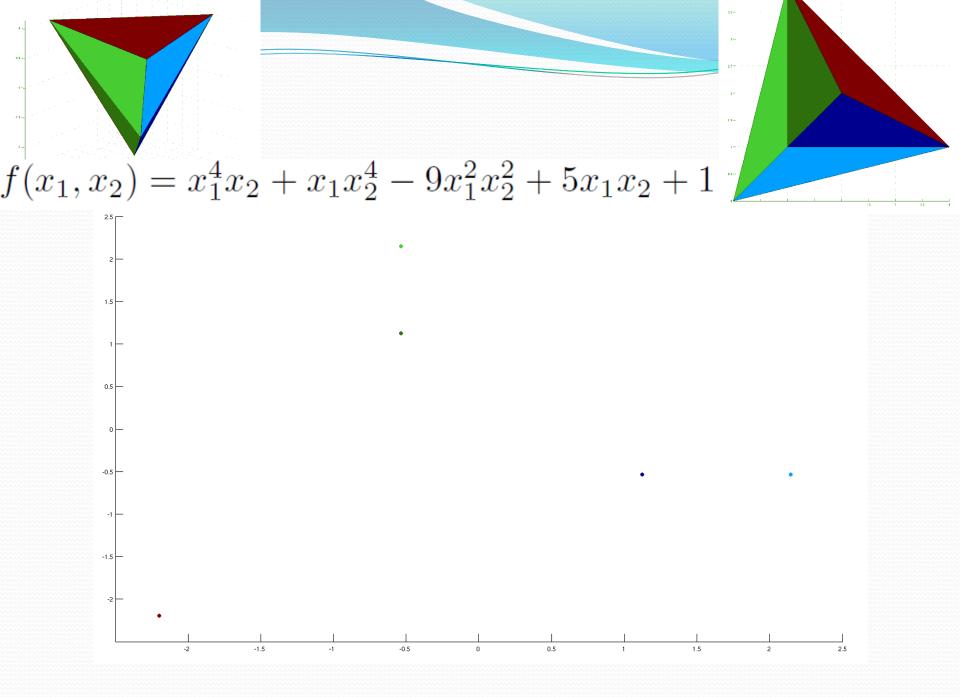


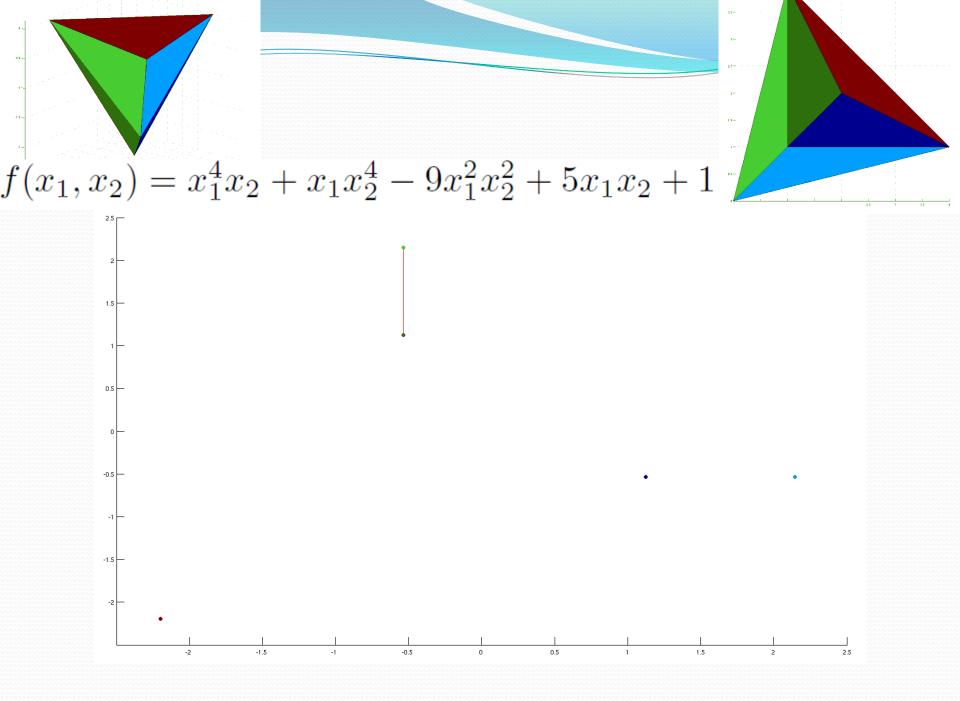


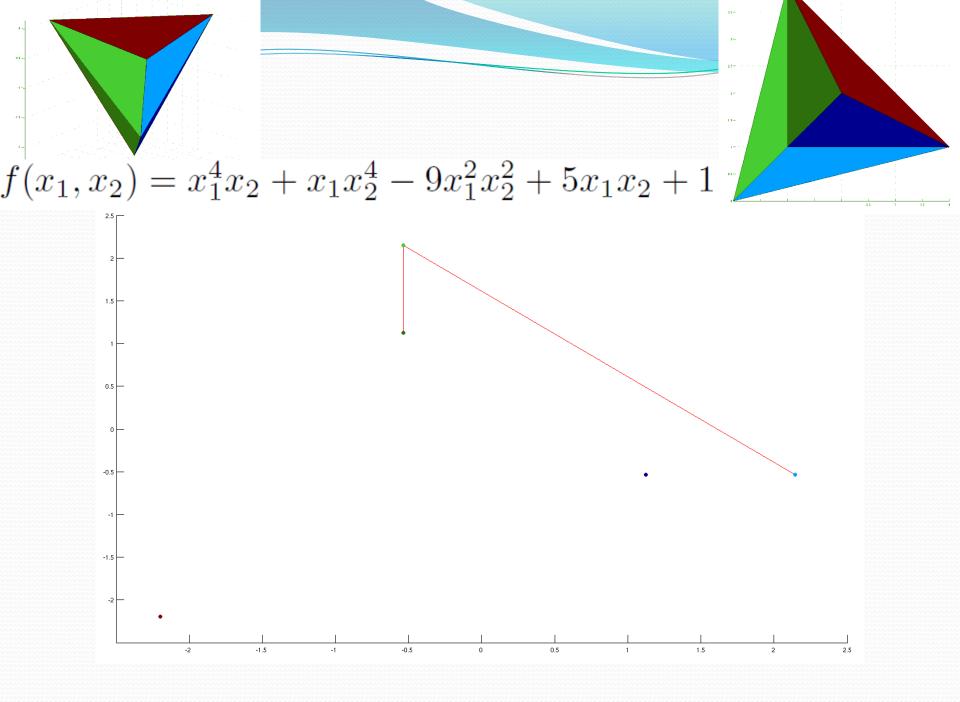
 $f(x_1, x_2) = x_1^4 x_2 + x_1 x_2^4 - 9x_1^2 x_2^2 + 5x_1 x_2 + 1$

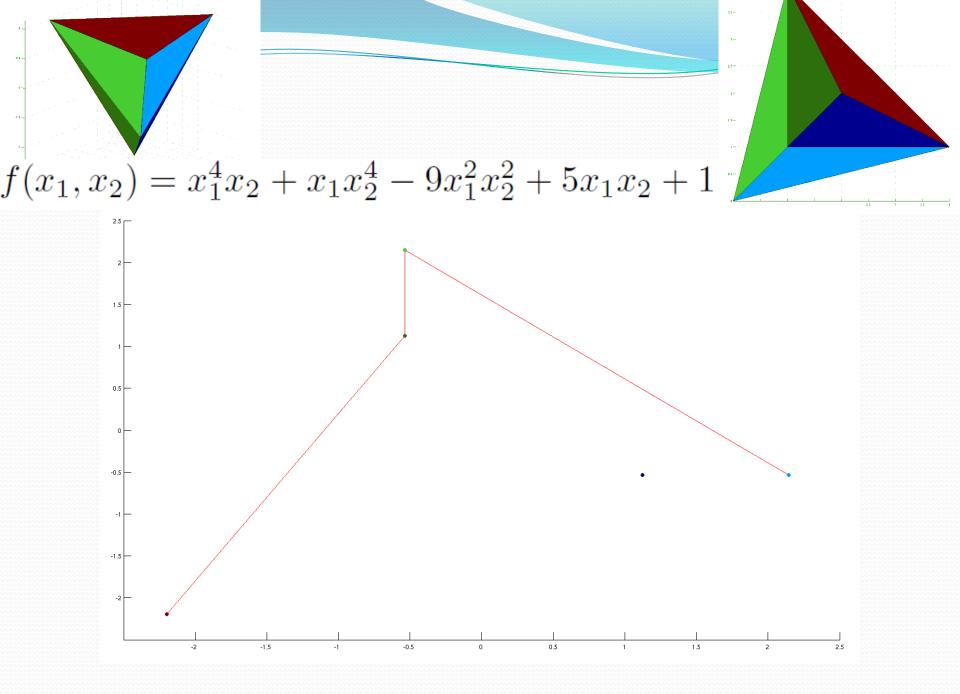


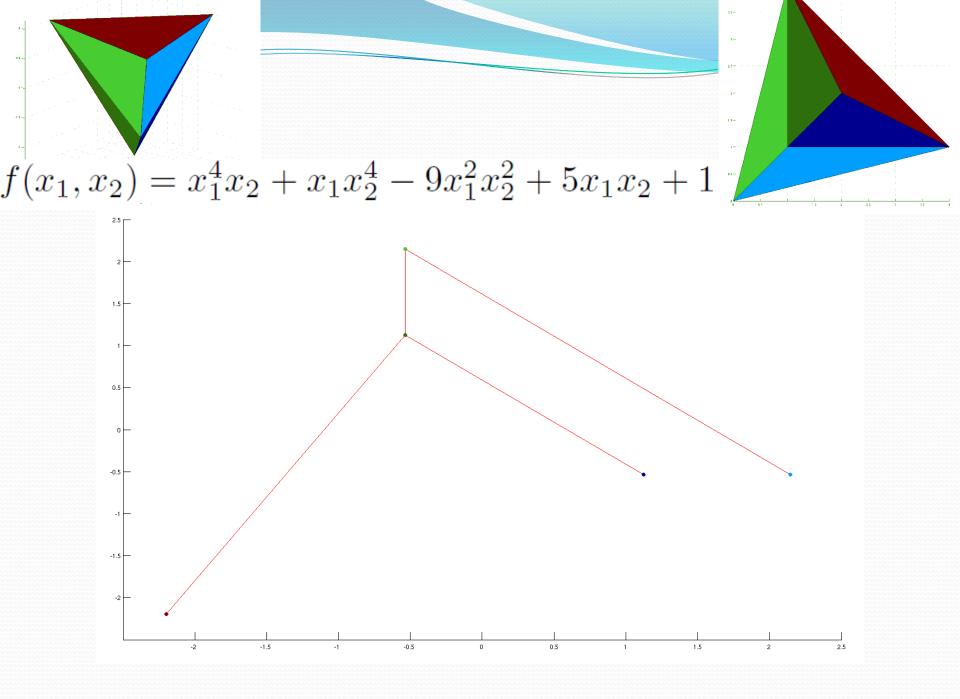


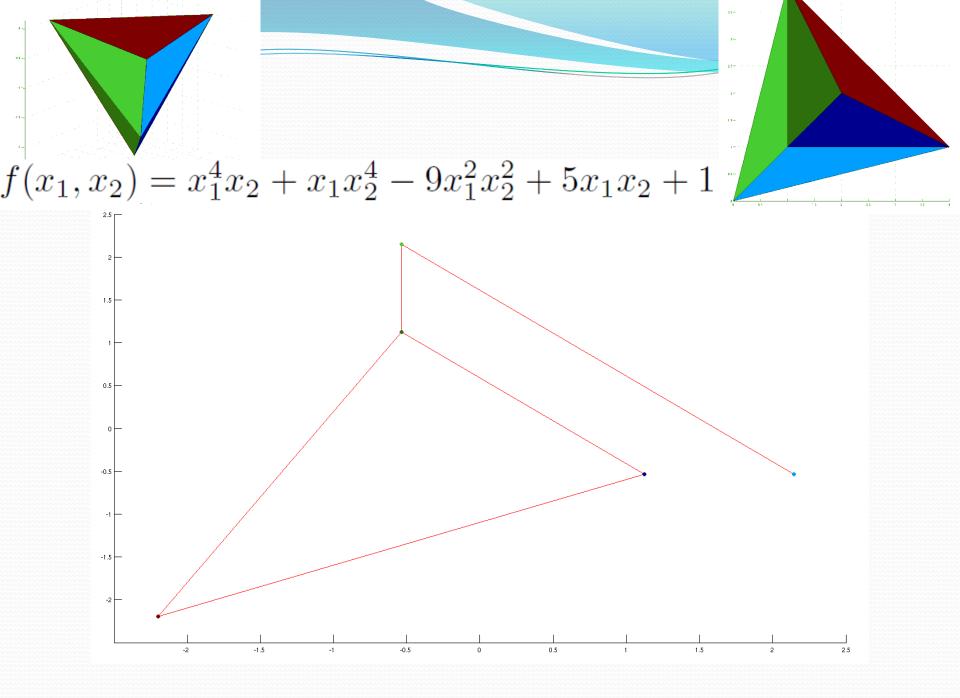


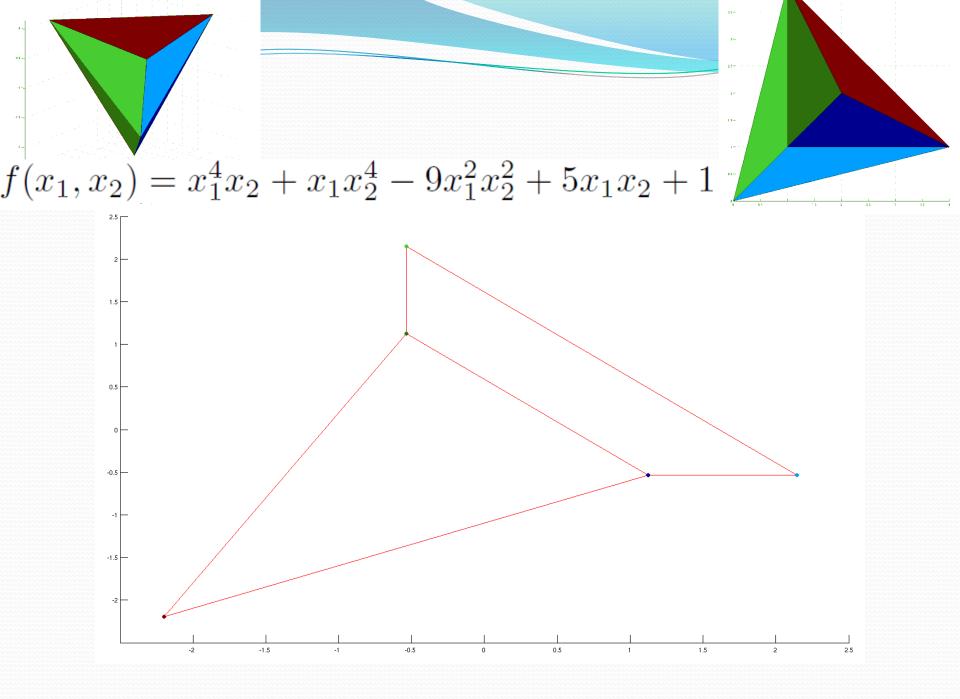


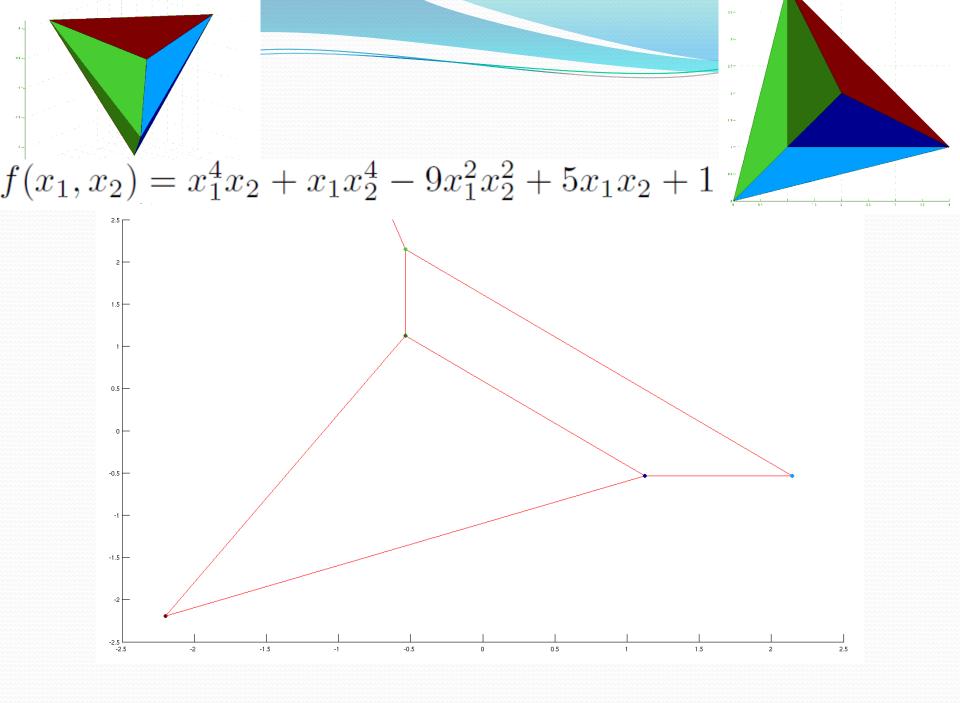


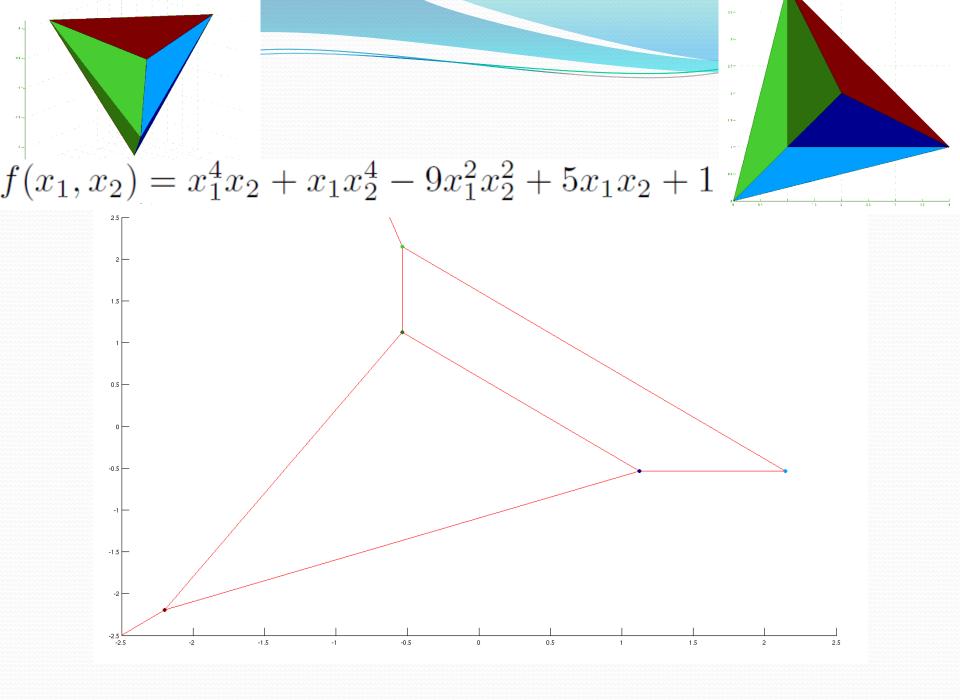


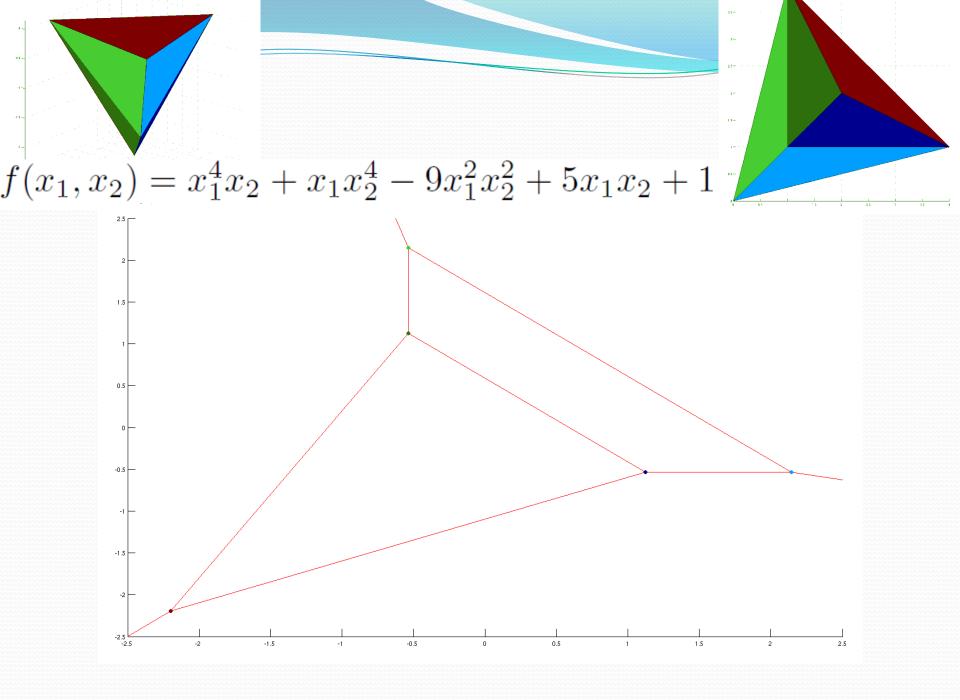


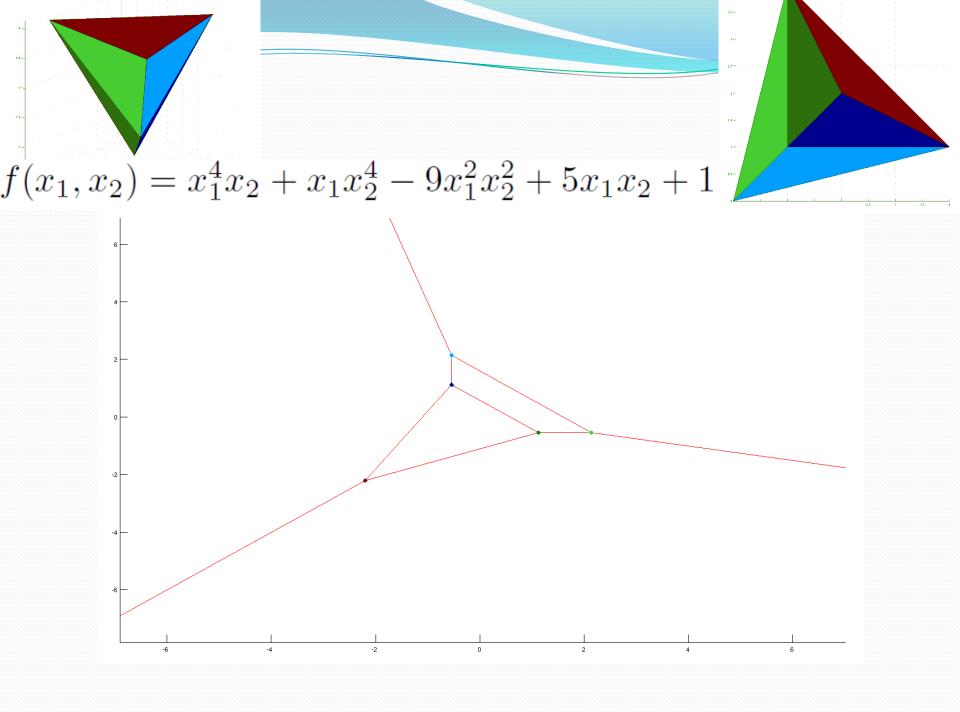


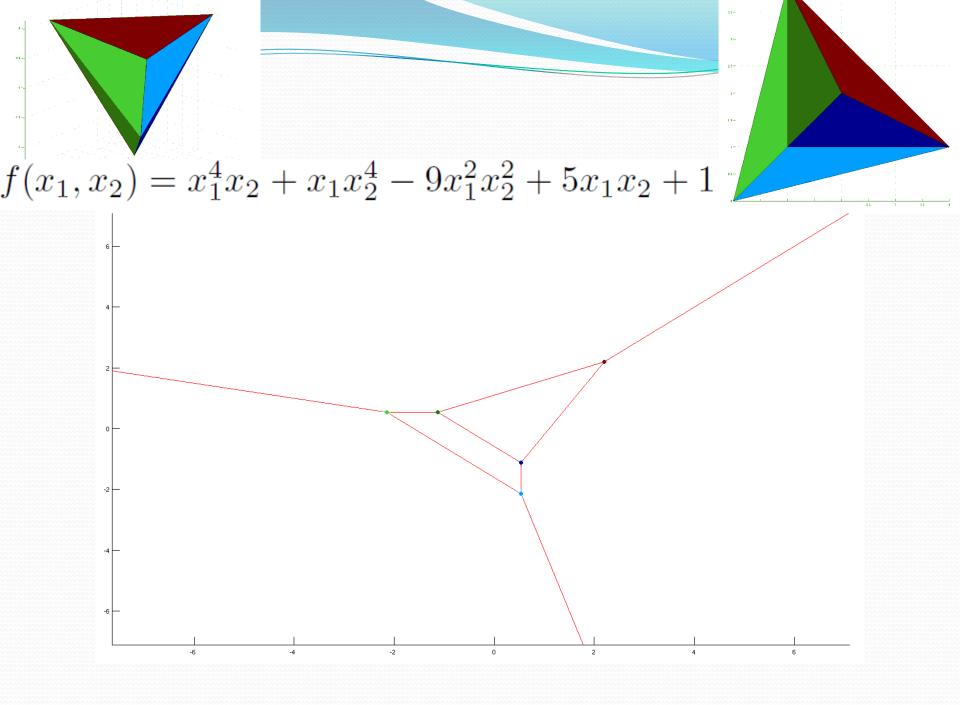


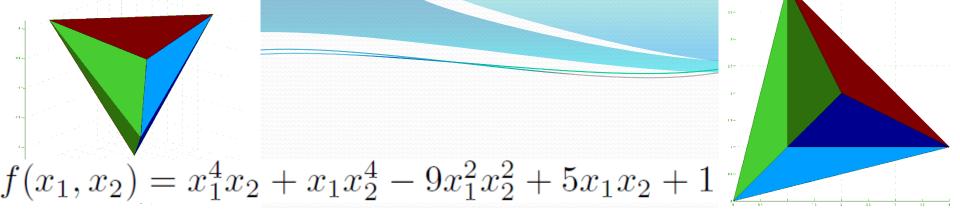


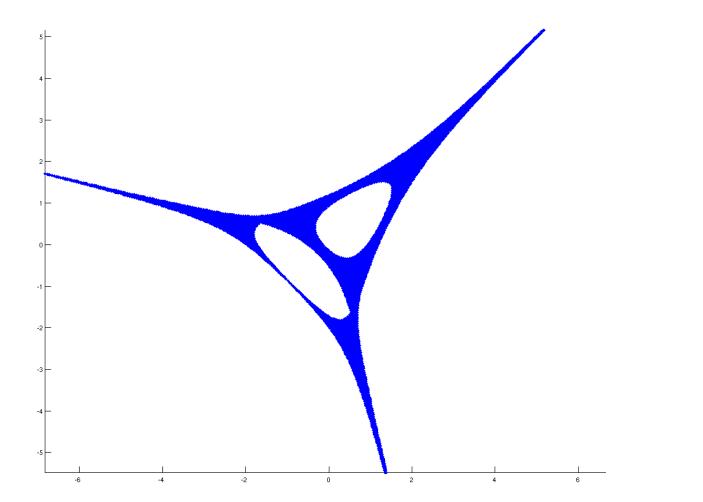


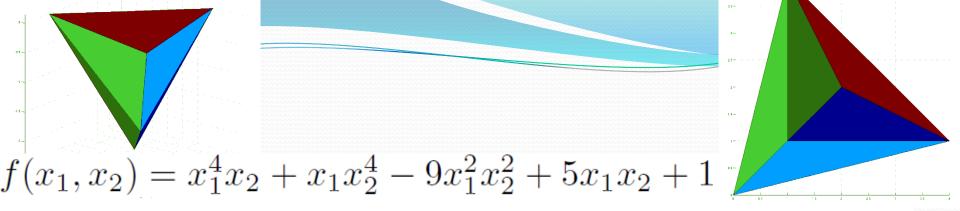


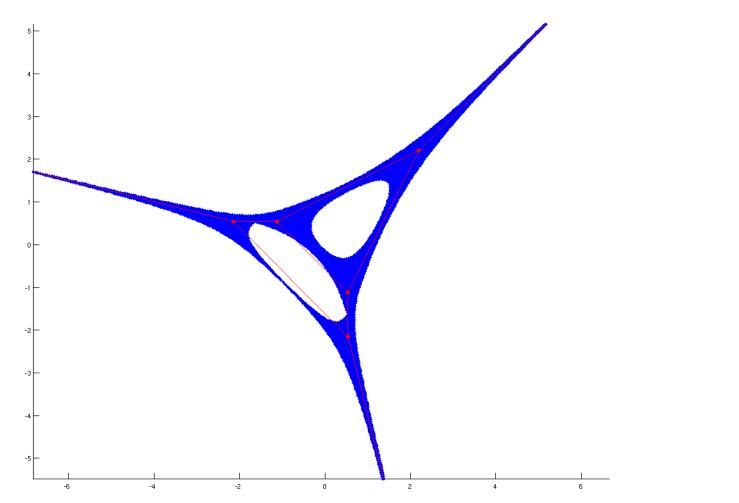




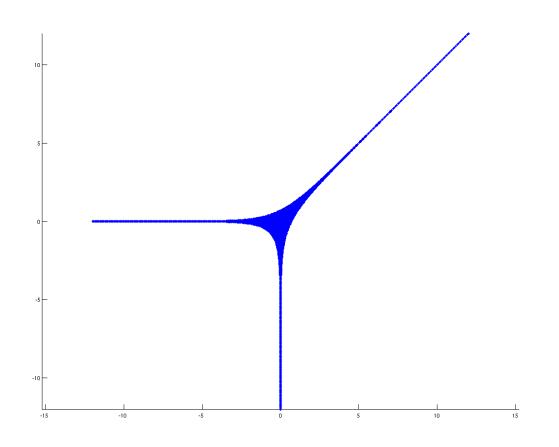




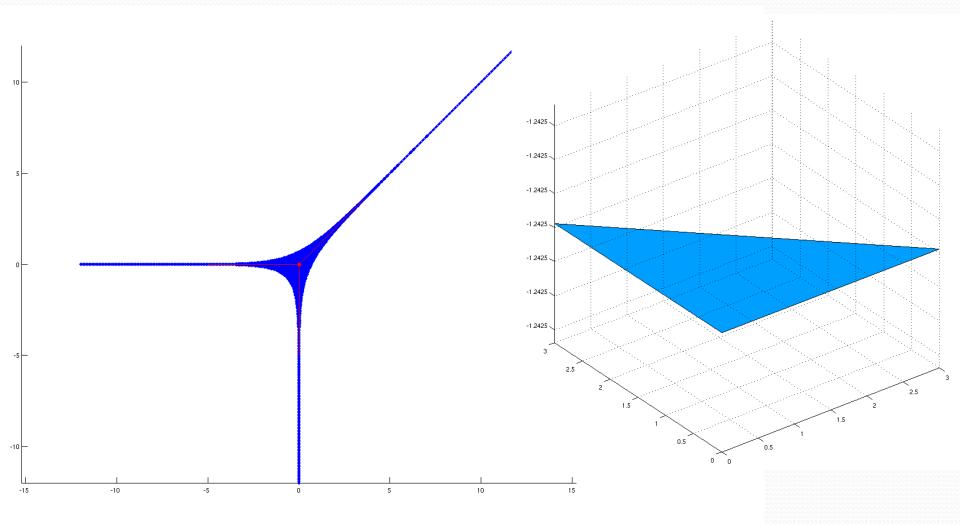


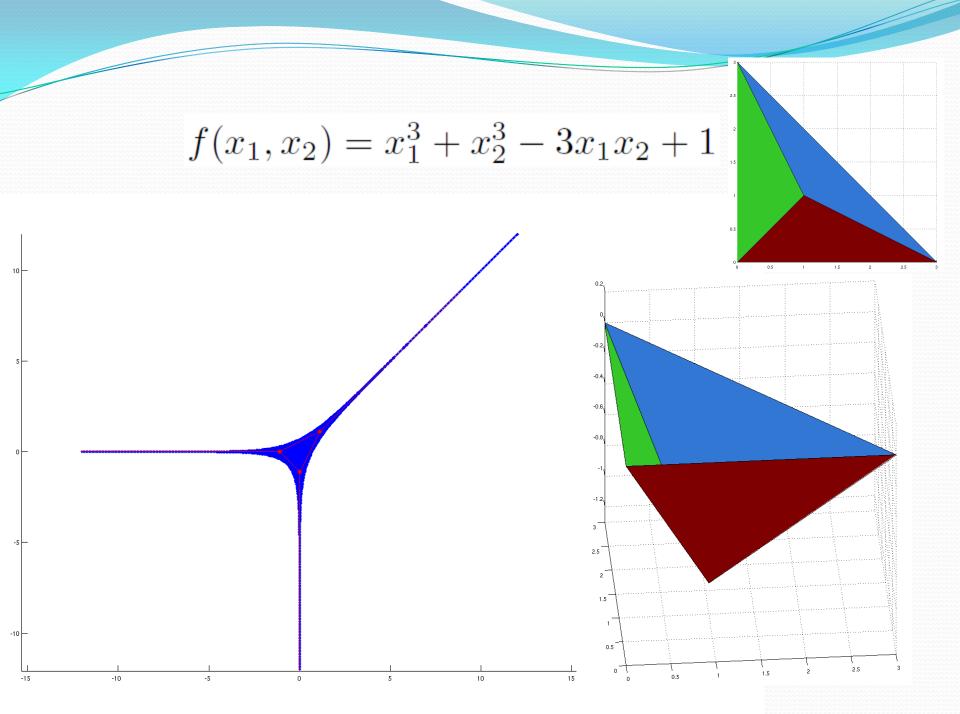


 $f(x_1, x_2) = x_1^3 + x_2^3 - 3x_1x_2 + 1$



 $f(x_1, x_2) = x_1^3 + x_2^3 - 3x_1x_2 + 1$





 $\begin{array}{l} f(x_1,x_2) = 50x_1^3 + 83x_1^2x_2 + 24x_1x_2^2 + x_2^3 + 392x_1^2 + 414x_1x_2 + 50x_2 - 28x_1 + 59x_2 - 100 \end{array}$

10

-5

-10

-20

-15

-10

-5

0

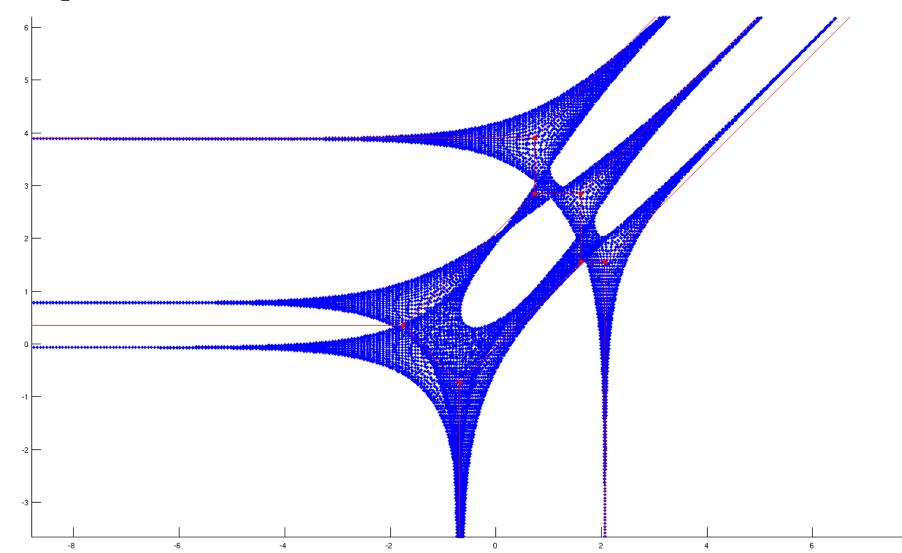
5

10

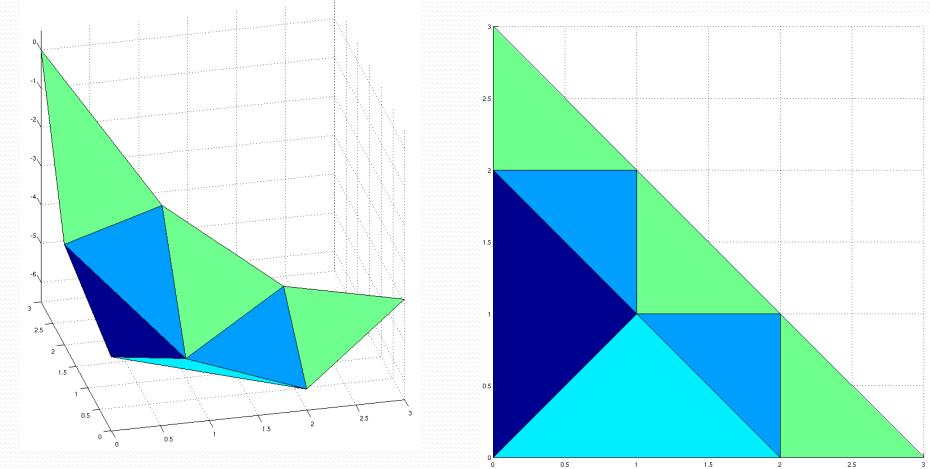
15

20

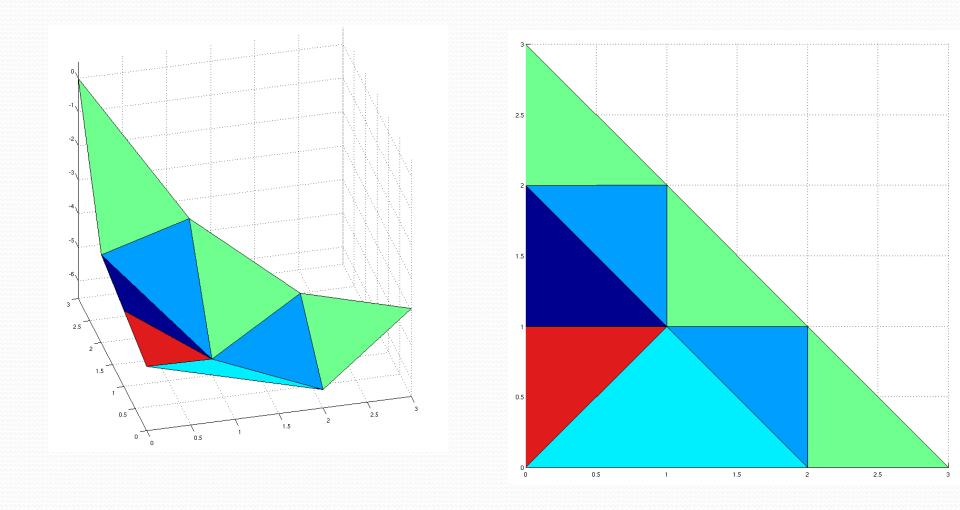
 $\begin{array}{l} f(x_1,x_2) = 50x_1^3 + 83x_1^2x_2 + 24x_1x_2^2 + x_2^3 + 392x_1^2 + 414x_1x_2 + 50x_2 - 28x_1 + 59x_2 - 100 \end{array}$



 $f(x_1, x_2) = 50x_1^3 + 83x_1^2x_2 + 24x_1x_2^2 + x_2^3 + 392x_1^2 + 414x_1x_2 + 50x_2 - 28x_1 + 6x_1x_2 + 50x_2 + 50x_2 - 28x_1 + 6x_1x_2 + 50x_2 + 50x$ $59x_2 - 100$



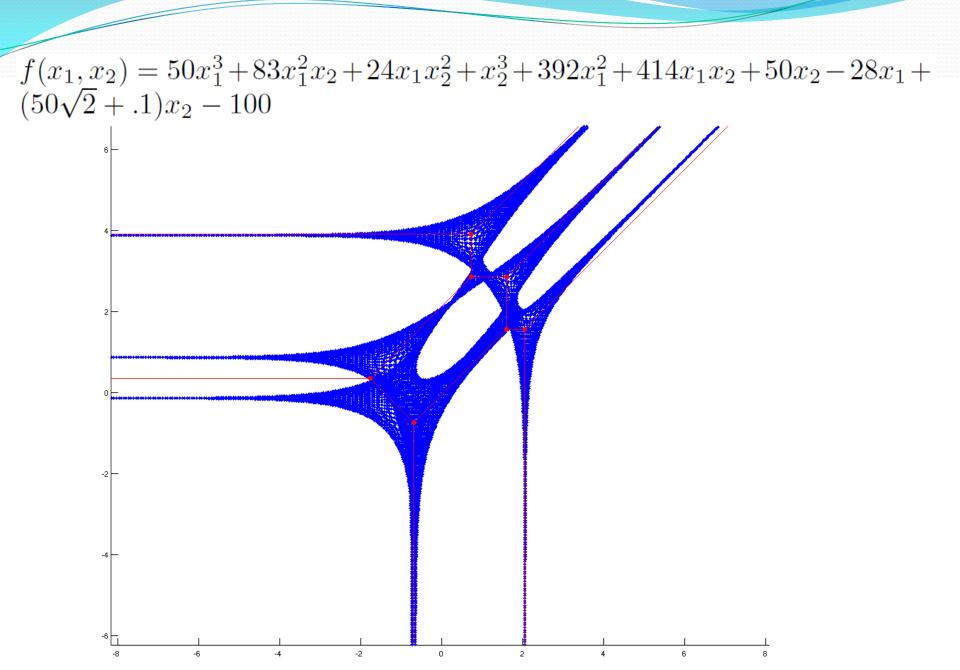
 $\begin{array}{l} f(x_1,x_2) = 50x_1^3 + 83x_1^2x_2 + 24x_1x_2^2 + x_2^3 + 392x_1^2 + 414x_1x_2 + 50x_2 - 28x_1 + 50\sqrt{2}x_2 - 100 \end{array}$

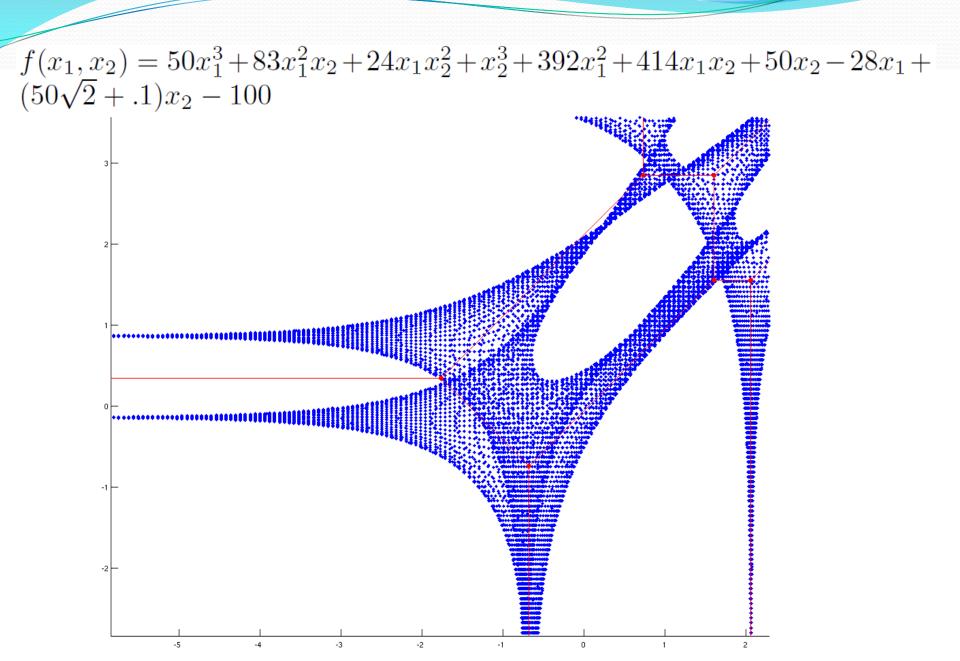


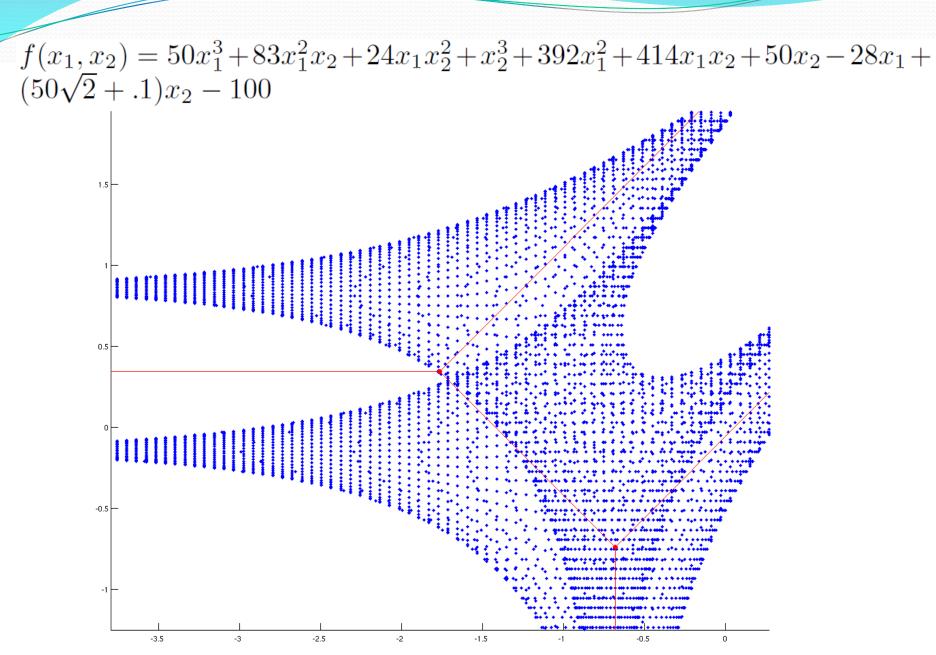
 $f(x_{1,}x_{2}) = 50x_{1}^{3} + 83x_{1}^{2}x_{2} + 24x_{1}x_{2}^{2} + x_{2}^{3} + 392x_{1}^{2} + 414x_{1}x_{2} + 50x_{2} - 28x_{1} + 50x_{1} + 50x_{2} - 28x_{1} + 50$ $50\sqrt{2}x_2 - 100$ -2 -6 -4 0 4 6

 $\begin{array}{l} f(x_1,x_2) = 50x_1^3 + 83x_1^2x_2 + 24x_1x_2^2 + x_2^3 + 392x_1^2 + 414x_1x_2 + 50x_2 - 28x_1 + \\ (50\sqrt{2}+.1)x_2 - 100 \end{array}$

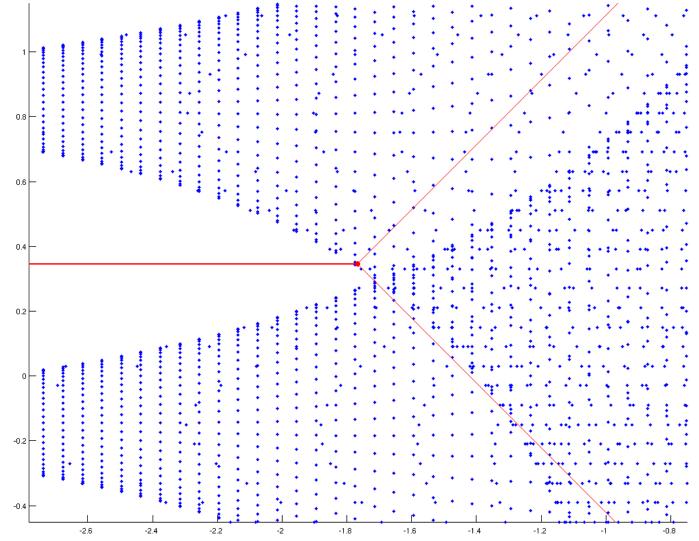




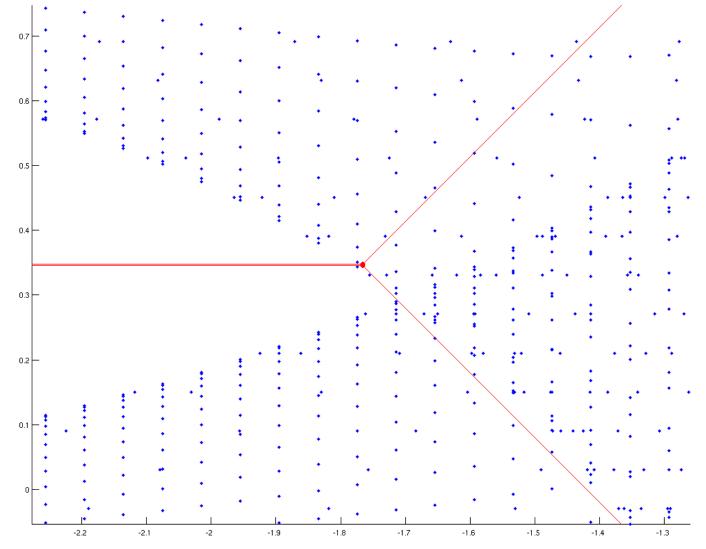




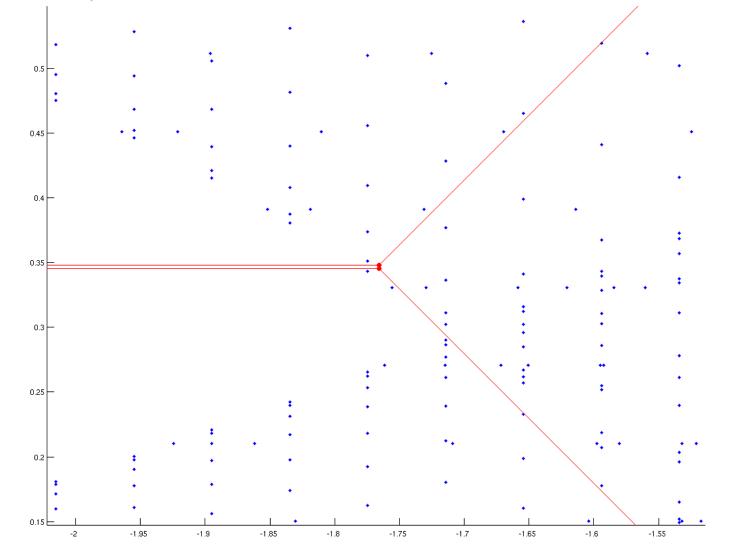
 $\begin{aligned} f(x_1, x_2) &= 50x_1^3 + 83x_1^2x_2 + 24x_1x_2^2 + x_2^3 + 392x_1^2 + 414x_1x_2 + 50x_2 - 28x_1 + \\ (50\sqrt{2} + .1)x_2 &- 100 \end{aligned}$



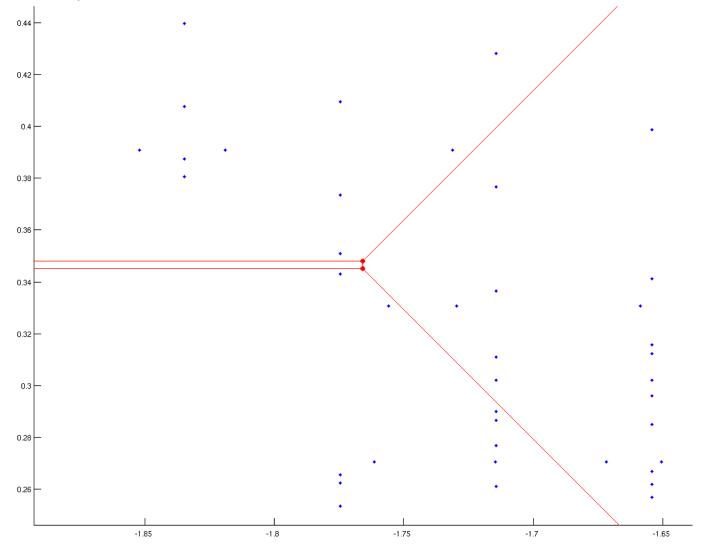
 $\begin{array}{l} f(x_1,x_2) = 50x_1^3 + 83x_1^2x_2 + 24x_1x_2^2 + x_2^3 + 392x_1^2 + 414x_1x_2 + 50x_2 - 28x_1 + \\ (50\sqrt{2} + .1)x_2 - 100 \end{array}$



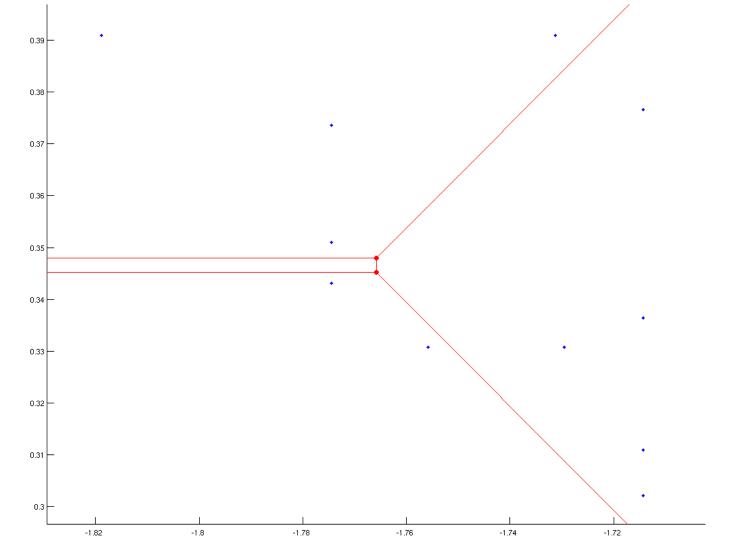
 $\begin{aligned} f(x_1, x_2) &= 50x_1^3 + 83x_1^2x_2 + 24x_1x_2^2 + x_2^3 + 392x_1^2 + 414x_1x_2 + 50x_2 - 28x_1 + (50\sqrt{2} + .1)x_2 - 100 \end{aligned}$



 $\begin{aligned} f(x_1, x_2) &= 50x_1^3 + 83x_1^2x_2 + 24x_1x_2^2 + x_2^3 + 392x_1^2 + 414x_1x_2 + 50x_2 - 28x_1 + (50\sqrt{2} + .1)x_2 - 100 \end{aligned}$

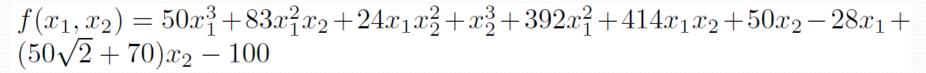


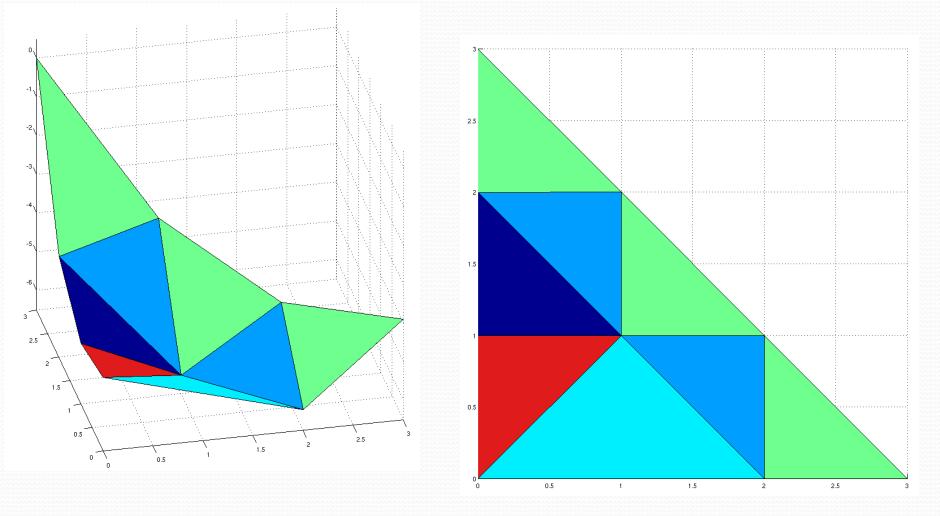
 $\begin{aligned} f(x_1, x_2) &= 50x_1^3 + 83x_1^2x_2 + 24x_1x_2^2 + x_2^3 + 392x_1^2 + 414x_1x_2 + 50x_2 - 28x_1 + \\ (50\sqrt{2} + .1)x_2 &- 100 \end{aligned}$



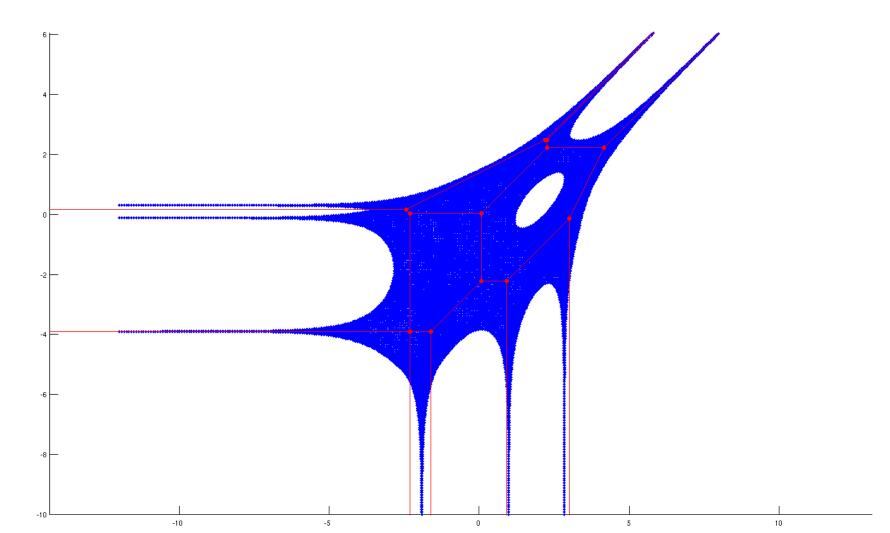
 $\begin{array}{l} f(x_1,x_2) = 50x_1^3 + 83x_1^2x_2 + 24x_1x_2^2 + x_2^3 + 392x_1^2 + 414x_1x_2 + 50x_2 - 28x_1 + \\ (50\sqrt{2}+70)x_2 - 100 \end{array}$

 $f(x_1, x_2) = 50x_1^3 + 83x_1^2x_2 + 24x_1x_2^2 + x_2^3 + 392x_1^2 + 414x_1x_2 + 50x_2 - 28x_1 + 6x_1x_2 + 50x_2 + 50x_2 - 28x_1 + 6x_1x_2 + 50x_2 + 50x$ $(50\sqrt{2}+70)x_2-100$ -10 -8 -2 0 4





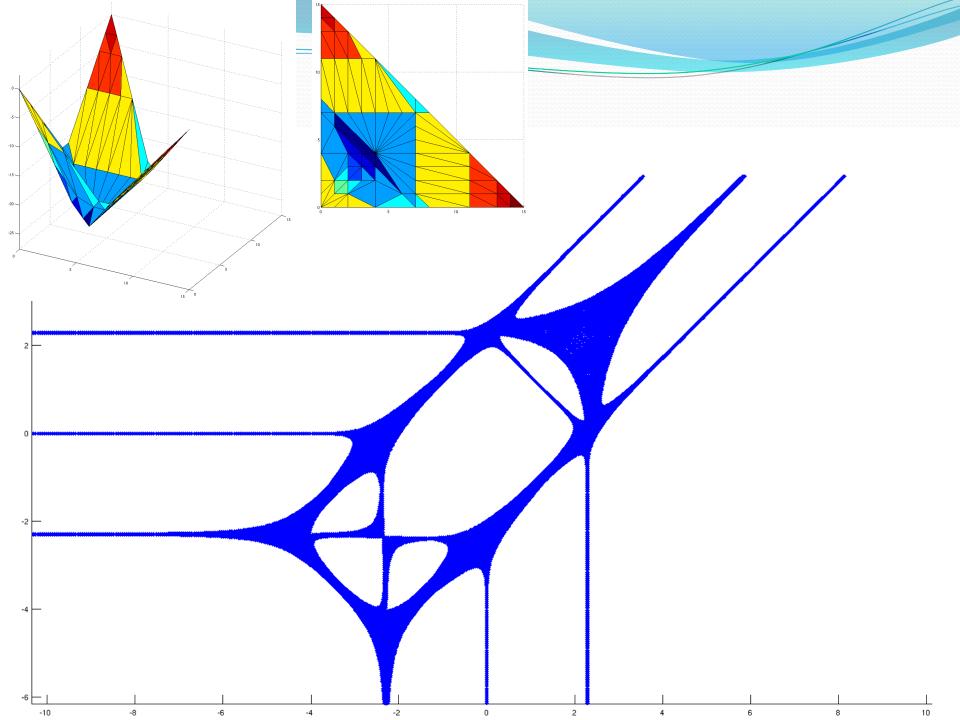
 $f(x_1, x_2) = x_1^4 + x_1^3 x_2 + 50x_1^2 x_2^2 + 40x_1 x_2^3 + 30x_2^4 + 20x_1^3 + 460x_1^2 x_2 + 480x_1 x_2^2 + 10x_2^3 + 50x_1^2 - 500x_1 x_2 + 40x_2^2 + 10x_1 + 50x_2 + 1$



The Point

• For
$$f(x) = \sum_{i=1}^{t} c_i x^{a_i}$$
 where $a_1, \ldots, a_t \in \mathbb{Z}^2$:

 $\Delta(-\operatorname{Amoeba}(f),\operatorname{Trop}(f)) \leq \log(t-1)$



End of slide show, click to exit