Ecosystem Modeling With an Emphasis on Phytoplankton

Danielle Rogers

Mississippi State University

Funded by the National Science Foundation and Texas A&M

July 25, 2013

Ecosystem Modeling

Danielle Rogers

Introduction

Importance

Models

Equations

Resource Diagrams

How to get coexistence

Introduction

Ecosystem Modeling

Danielle Rogers

Introduction

Importance

 Models

Equations

Resource Diagrams

How to get coexistence

- What are phytoplankton?
 - Small phytosynthetic microorganisms
 - Motile but dependent on current
- Project focused on the growth rate of phytoplankton communities
- How do we get multiple species using the same nutrient without a clear "winner"?

Ecosystem Modeling

Danielle Rogers

Introduction

Importance

Models

Equations

Resource Diagrams

How to get coexistence

- ► We want to understand how ecosystems work.
 - Why do we have multiple "winners" in some ecosystems but a clear "winner" in others?
 - If we understand more about how the species interact we may be able to intervene without catastrophe.

Resource Models

Ecosystem Modeling

Danielle Rogers

Introduction

Importance

Models

Equations

Resource Diagrams

How to get coexistence

Population

$$\frac{dN_i}{dt} = \mu N_i - \nu N_i$$

Substrate or Nutrient

$$\frac{dS}{dt} = \nu \left(S_{in} - S_j \right) - \sum_{i=1}^n Q_{ij} \mu_i N_i$$

 Resource Dependent Growth Equation

$$\mu_i = \tilde{\mu_i} \min_j \left(\frac{S_j}{S_j + k_{ij}} \right)$$

Ecosystem Modeling

Danielle Rogers

ntroduction

Importance

Models

Equations

Resource Diagrams

How to get coexistence

Resource Diagrams

Ecosystem Modeling

Danielle Rogers

Introduction

Importance

Models

Equations

Resource Diagrams

How to get coexistence

Ecosystem Modeling

Danielle Rogers

Introduction

Importance

Models

Equations

Resource Diagrams

How to get coexistence

•
$$\frac{dN_i}{dt} = 0$$
 equilibrium
• $\frac{dN_i}{dt} = \mu_i N_i - \nu N_i$ where $\mu_i = \nu$

• Plug
$$\nu$$
 into $\mu_i = \tilde{\mu_i}(\frac{S_j}{S_j + k_{ij}})$ if nutrient j is limiting

•
$$\nu = \tilde{\mu_i} \left(\frac{R_{ij}^*}{R_{ij}^* + k_{ij}} \right)$$

• $R_{ij}^* = \frac{k_{ij}\nu}{\tilde{\mu_i} - \nu}$

In the following models all the parameters had the same values except the amount of nutrient entering the system (S_{in}).

$$S_{in} = \left[\begin{array}{c} 10\\ 7.5 \end{array}
ight]$$

$$S_{in} = \left[egin{array}{c} 10 \\ 4.5 \end{array}
ight]$$

Ecosystem Modeling

Danielle Rogers

ntroduction

Importance

Models

Equations

Resource Diagrams

How to get coexistence

Ecosystem Modeling

Danielle Rogers

Introduction

Importance

 Models

Equations

Resource Diagrams

How to get coexistence

- Nutrient limitation models are from David Tilman's book *Resource Competition and Community Structure*. Princeton University Press, Princeton, NJ. 1982.
- Pictures of phytoplankton provided by http://www.cof.orst.edu/project/plankton/truittr.html and http://www.biologyreference.com/Ph-Po/Plankton.html