Algorithms for Determining the Topology of Positive Zero Sets
 REU on Algorithmic Algebraic Geometry

Joseph Rennie

Texas A\&M

07/24/2013

Acknowledgements

- Funded by the National Science Foundation and Texas A\&M University
- Special thanks to Svetlana Kaynova for her contributions to this project
- Thank you also to our mentors Dr. J. Maurice Rojas and Kaitlyn Phillipson

Outline

(1) Background
(2) Foundation
(3) Our Goal
(4) Approaches
(5) Conclusion

Algebraic Geometry-What

What is it?

- Varieties - Zero sets of systems of polynomials

Algebraic Geometry-What

What is it?

- Varieties - Zero sets of systems of polynomials
- Notation/Terminology Hell...but worth it!

Algebraic Geometry-Why

- Pure Mathematics
- Nice Problems
- Connections to other areas of mathematics
- Number Theory
- Combinatorics
- Statistics
- Applied Mathematics
- Physics, Mathematical Biology, Automated Geometric Reasoning,...

(A) The "interplanetary superhighway"

Image can be found at www.jpl.nasa.gov/images/superhighway_square.jpg

Terms: at the gates

The support \mathcal{A} of an n -variate t-nomial f, where

$$
f\left(x_{1}, \ldots, x_{n}\right)=c_{1} x^{a_{1}}+\cdots+c_{t} x^{a_{t}}
$$

is given by $\mathcal{A}=\left\{a_{1}, \ldots, a_{t}\right\}$ where each $a_{i} \in \mathbb{R}^{n}$ and where $x^{a_{i}}=x_{1}^{a_{i 1}} \ldots x_{n}^{a_{i n}}$.

For example, let $f\left(x_{1}, x_{2}\right)=42+42 x_{2}^{3}+42 x_{1}^{3}+42 x_{1} x_{2}$ (a bivariate tetranomial) then $\mathcal{A}=\{(0,0),(0,3),(3,0),(1,1)\}$

A polynomial is said to be honest if its support does not lie in any (n -1)-plane.

Notation

- $Z_{+}(f)$ is the set of roots of f in the positive orthant \mathbb{R}_{+}^{n}.
- $Z_{\mathbb{R}}(f)$ is the set of real roots of f.

Conjecture

Given $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ an honest ($n+2$)-nomial, $Z_{+}(f)$ has topology isotopic to a quadric hypersurface of the form

$$
x_{1}^{2}+\cdots+x_{j}^{2}-\left(x_{j+1}^{2}+\cdots+x_{n}^{2}\right)=\varepsilon
$$

where j and the sign of ε are computable in polynomial time (for fixed n) from the support \mathcal{A} and coefficients of f.

Quadric Hypersurfaces

(B) $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$
(c) $x_{1}^{2}+x_{2}^{2}-x_{3}^{2}=1$
(D) $x_{1}^{2}+x_{2}^{2}-x_{3}^{2}=-1$

Figure 1: Nondegenerate Quadric Hypersurfaces

Images courtesy of Wikipedia

Quadric Hypersurfaces

$$
\text { (A) } x_{1}^{2}+x_{2}^{2}-x_{3}^{2}=0
$$

Figure 2: Degenerate Quadric Hypersurface

Image courtesy of Wikipedia

ISOTOPY

- A homemorphism (resp. diffeomorphism) is a continuous (resp. differentiable) bijection with a continuous (resp. differentiable) inverse.

Isotopy

- A homemorphism (resp. diffeomorphism) is a continuous (resp. differentiable) bijection with a continuous (resp. differentiable) inverse.
- Given any subsets $X, Y \subseteq R_{+}^{n}$, we say that they are isotopic (resp. diffeotopic) iff there is a continuous (resp. differentiable) function $H:[0,1] \times X \longrightarrow R_{+}^{n}$

Isotopy

- A homemorphism (resp. diffeomorphism) is a continuous (resp. differentiable) bijection with a continuous (resp. differentiable) inverse.
- Given any subsets $X, Y \subseteq R_{+}^{n}$, we say that they are isotopic (resp. diffeotopic) iff there is a continuous (resp. differentiable) function $H:[0,1] \times X \longrightarrow R_{+}^{n}$ such that $H(t, \cdot)$ is a homeomorphism (resp. diffeomorphism) for all $t \in[0,1]$,

Isotopy

- A homemorphism (resp. diffeomorphism) is a continuous (resp. differentiable) bijection with a continuous (resp. differentiable) inverse.
- Given any subsets $X, Y \subseteq R_{+}^{n}$, we say that they are isotopic (resp. diffeotopic) iff there is a continuous (resp. differentiable) function $H:[0,1] \times X \longrightarrow R_{+}^{n}$ such that $H(t, \cdot)$ is a homeomorphism (resp. diffeomorphism) for all $t \in[0,1], H(0, \cdot)$ is the identity on X, and $H(1, X)=Y$.

Conjecture

Given $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ an honest ($n+2$)-nomial, $Z_{+}(f)$ has topology isotopic to a quadric hypersurface of the form

$$
x_{1}^{2}+\cdots+x_{j}^{2}-\left(x_{j+1}^{2}+\cdots+x_{n}^{2}\right)=\varepsilon
$$

where j and the sign of ε are computable in polynomial time (for fixed n) from the support \mathcal{A} and coefficients of f.

Discriminant Varieties

Given any $\mathcal{A} \in \mathbb{Z}^{n}$, we define the \mathcal{A}-discriminant variety, written $\nabla_{\mathcal{A}}$, to be the topological closure of

$$
\begin{aligned}
&\left\{\left[c_{1}: \cdots: c_{T}\right] \in \mathbb{P}_{\mathbb{C}}^{T-1} \mid c_{1} x^{a_{1}}+\cdots+c_{T} x^{a T}\right. \\
&\text { has a degenerate root in } \left.\left(\mathbb{C}^{*}\right)^{n}\right\}
\end{aligned}
$$

The real part of $\nabla_{\mathcal{A}}$ determines where in coefficient space the real zero set of a polynomial (with support \mathcal{A}) changes topology.

- Consequences of the conjecture
- Tells us about the topology of positive zero sets of honest n-variate $(n+2)$-nomials of arbitrary degree
- Results
- We currently have a bound on the number of connected components of n-variate ($n+2$)-nomials.

THANK YOU FOR YOUR ATTENTION!!!

:)

Bibliography

䒠I．M．Gelfand，M．M．Kapranov，and A．V．Zelevinsky Discriminants， Resultants，and Multidimensional Determinants 2008：Birkhäuser Boston，N．Y．

目＂Faster Real Feasibility via Circuit Discriminants，＂（by Frederic Bihan， J．Maurice Rojas，and Casey Stella），proceedings of ISSAC 2009 （July 28－31，Seoul，Korea），pp．39－46，ACM Press， 2009.

围＂Faster Topology Computation for Positive Zero Sets of Certain Sparse Polynomials，＂F．Bihan，E．Refsland，J．R．Rennie，and J．M． Rojas，in progress．

