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1. Introduction

It has been proved by Rankin and Swinnerton-Dyer[RS] that for the Eisenstein Series
with 2k ≥ 4, the zeros of E2k(τ) in the fundamental domain lie on the circle |τ | = 1. This
theorem has no parallel with respect to quasimodular forms. In fact, very little is known
about the zeros of quasimodular forms. The Eisenstein Series of weight 2 is a quasimdoular
form. It is known that the Eisenstein series has infinitely many zeros within the half-strip of
the complex plane[BS]. However, apart from this fact not much is known about the location
of these zeros. This paper will further investigate various properties of these zeros and the
equivariant function h(z).

2. Background

To begin, we would like to familiarize the reader with some terminology. The Fundamental
Domain, denoted by D, is given by,

D = {z ∈ H : |z| ≥ 1 and − 1

2
≤ x ≤ 1

2
}.

The half-strip, denoted by G, is given by,

G = {z ∈ H : −1

2
≤ x ≤ 1

2
}.

Let SL2(Z) be the set of matrices M = ( a b
c d ) where ad− bc = 1 and a, b, c, d ∈ Z

We will now introduce the Eisenstein Series of weight 2k which has the Fourier expansion

E2k(z) = 1 + γ2k

∞∑
n=1

σ2k−1(n)e
2πinz,

where

γ2k = (−1)k
4k

Bk

,

Bk is the k-th Bernoulli number, and σ2k−1(n) =
∑

a|n a
2k−1.

When k ≥ 2, E2k(z) is a modular form for SL2(Z) which means that it is holomorphic
on H, including ∞, and it satisfies the relations

f(z) = (cz + d)−2kf(
az + b

cz + d
) for all

(
a b
c d

)
∈ SL2(Z).

This is equivalent to

f(z + 1) = f(z) and f(
−1

z
) = z2kf(z).
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There are no non-zero modular forms of weight 2 for SL2(Z). When k = 1, the function
E2(z) defined by its Fourier expansion

E2 = 1− 24
∞∑
n=1

σ1(n)e
2πinz

is not a modular form. Rather, it is called a quasimodular form, which satisfies the relation

E2(
az + b

cz + d
) = (cz + d)2E2(z)−

6

π
ic(cz + d).

3. Zeros of E2(z)

Basraoui and Sebbar [BS] showed that E2(z) has infinitely many zeros in G, none of which
exist in D. However, very little is known about the actual location of these zeros. We used
Mathematica to numerically solve the equation E2(z) = 0 for y ≥ ε for various values of ε.

Figure 3.1. E2(z) = 0 for y > .001.

As we were examining the data, we noticed that for z = x + iy such that E2(z) = 0,
Re(z) is very close to a rational number with a small denominator. Indeed, when we took
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our data points and applied a rational approximation out to the 4th decimal place, we found
that all the rational numbers within G were represented to a certain limit that increases as
ϵ gets closer to 0. We will display a small amount of our output for the reader to see. Note:
Although we are showing both the x,y coordinates, we are only interested in the x-coordinate.

(-0.5, 0.13091903039678807) is equal to −1
2

(-0.3333258907443707, 0.0581819236539682) is very close approximation to −1
3

(-0.24999517436865332, 0.03272491502484815) is a very close approximation to −1
4

(-0.19999706592659725, 0.020942992285893466) is a very close approximation to −1
5

(-0.400001820482515, 0.020946451273604345) is a very close approximation to −2
5

And this pattern continues for all the zeros of E2(z) where y > .001. When we approximate
these zeros, we generate a list of rational numbers. What you see below is just a small sample
but is indiciative our results. Notice that every rational number (within G) appears in the
list out to a certain denominator. In this case, we stop our output at 3

10
, but be assured this

pattern continues.
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4. Properties of h(z)

We now introduce the equation for h(z), which is defined by

h(z) = z +
6

iπE2(z)
.

This function h(z) is equivariant, which means that for z ∈ H and α ∈ SL2(Z), then
(4.1) h(αz) = αh(z).

See Sebbar-Sebbar [SS] for some properties of h. Also note that h(z0) = ∞ is equivalent to
E2(z0) = 0.

Proof of (4.1). Let α ∈ SL2(Z) : α = ( a b
c d ) and z ∈ H

Consider h(αz) = αz + 6
πiE2(αz)

. By the transformation properties of E2(αz) and of α we

have,

h(αz) =
az + b

cz + d
+

6

πi[(cz + d)2E2(z) +
6
πi
c(cz + d)]

.

h(αz) =
1

cz + d

[
(az + b) +

6
πiE2(z)

(cz + d) + 6c
πiE2(z)

]
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h(αz) =
1

cz + d

[
(az + b)[(cz + d) + 6c

πiE2(z)
] + 6

πiE2(z)

(cz + d) + 6c
πiE2(z)

]
Recall, since α ∈ SL2(Z), ad− bc = 1.

h(αz) =
1

cz + d

[
(az + b)(cz + d) + (az + b)[ 6c

πiE2(z)
] + 6

πiE2(z)
(ad− bc)

(cz + d) + 6c
πiE2(z)

]

h(αz) =
1

cz + d

[
(az + b)(cz + d) + a(cz + d) 6

πiE2(z)

(cz + d) + 6c
πiE2(z)

]
h(αz) =

(az + b) + a( 6
πiE2(z)

)

(cz + d) + c( 6
πiE2(z)

)

h(αz) =
a(z + 6

πiE2(z)
) + b

c(z + 6
πiE2(z)

) + d
=

a(h(z)) + b

c(h(z)) + d
= αh(z)

□

Next we state a variation of Lemma 3.4 of Balasubramanian-Gun [BG], who worked with
g(z) = 1/h(z).

Theorem 4.1. If E2(z0) = 0 then h(γz0) =
a
c
for γ = ( a b

c d ). Conversely, if h(τ0) =
a
c
with

coprime a, c, then E2(γ
−1τ0) = 0 for γ = ( a b

c d ).

Proof. Consider the case when E2(z0) = 0 (so h(z0) = ∞), and let z = γz0. Note that
γ∞ = a

c
. Then

h(γz0) = γh(z0) = γ∞ =
a

c
.

Conversely, suppose h(τ0) =
a
c
. Then

(4.2) h(γ−1τ0) = γ−1h(τ0) = γ−1a

c
= ∞,

so E2(γ
−1τ0) = 0. □

Since h(z) is rational only when E2(z) = 0, by graphing Im(h(z)) = 0, all of the solutions
to E2(z) = 0 will be plotted along with some other values. The graphs of Im(h(z)) = 0 are
placed at the end of the paper, but the images will be discussed here.

The “almost-circular” shapes in Figures 4.1 and 4.2 can be shown to be nearly circlular.
By applying all the elements of SL2(Z) to the curve that satisfies Im(h(z)) = 0 in D, our
resulting images are the nearly circular shapes that we see below D. Therefore, our curve in D
is the generating curve for all the solution curves in H. The curve generated by Im(h(z)) = 0
in D can be bounded above and below by straight lines. By this fact, we know the curves
below D are very close to circles. Because as SL2(Z) translates these 2 lines and our curve,
the image is two perfect circles with the translated curve sitting in-between.

These graphs prompted us to ask the question: What would happen if we transformed
the zeros of E2 into D? Recall, E2(z) has no zeros in D. However, we can translate the
coordinates of each of our zeros back into D by applying different elements of SL2(Z) to
each individual point. Figure 4.4 shows a sample of some of our zeros of E2(z) which have
been translated back into D. When we show the curve of Im(h(z)) = 0 which is in D along
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with our translated zeros, we have Figure 4.5. The fact that these lie on the same curve is
a expected consequence of Theorem 4.1 and the fact that the curve of Im(h(z)) = 0 in D
is the generating curve for all values of curve of Im(h(z)) = 0. Indeed, if we translated all
of the zeros of E2(z) back into D, the resulting image would be the same as Figure 4.3 (i.e.
they would trace out the curve of Im(h(z)) = 0 in D).

Theorem 4.2 (M. Young, R. Wood). The real values of the function h(z) which occur in
the fundamental domain D occur only in the small strip |y − 6/π| < .00028.

Proof. (Note: A more rigourous proof with actual bounds for the error terms is in progress)

Let z ∈ D ,therefore,
√
3
2

≤ y ≤ ∞.

h(z) = (x+ iy) +
6

πiE2(x+ iy)

h(x+ iy) = (x+ iy) +
6

πi[1− 24
∞∑
n=1

σ1(n)e
2πin(x+iy)]

h(x+ iy) ≈ (x+ iy) +
6

πi

1

1− 24e2πixe−2πy + ε

where ε is a negligable error term.
Recall, the Taylor Series for 1

1−u
= 1 + u+ u2 + u3 + .... Therefore if we let

u = 24(1)e2πixe−2πy + ε

we find that

h(x+ iy) ≈ (x+ iy) +
6

πi
[1 + u+ u2 + u3 + .......].

h(x+ iy) ≈ (x+ iy) +
6

πi

[
1 + (24(1)e2πixe−2πy + ε) + (24(1)e2πixe−2πy + ε)2 + ......

]
ε0 =

[
(24(1)e2πixe−2πy + ε)2 + (24(1)e2πixe−2πy + ε)3 + (24(1)e2πixe−2πy + ε)4 + .....

]
is also

another negligable error term for our purposes.

h(x+ iy) ≈ (x+ iy) +
6

πi
(1 + (24(1)e2πixe−2πy))

h(x+ iy) ≈ x+ iy +
6

πi
+

24 ∗ 6
πi

e−2πy[cos 2πx+ i sin 2πx] + ...[small error]

h(x+ iy) ≈
[
x+

24 ∗ 6
π

sin 2πxe−2πy

]
+i

[
y − 6

π
− 24 ∗ 6

π
[cos 2πxe−2πy]

]
If y > 6

π
+ 24∗6

π
e−2πy + ...., then h(x+ iy) is not real.

If y < 6
π
− 24∗6

π
e−2πy + ...., then h(x+ iy) is not real.

For h(x+ iy) to be real we need,

6

π
− 24 ∗ 6

π
e−2πy ≤ y ≤ 6

π
+

24 ∗ 6
π

e−2πy
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Let y = 6
π
+ δ where delta is very small.

6

π
− 24 ∗ 6

π
e−2πy ≤ 6

π
+ δ ≤ 6

π
+

24 ∗ 6
π

e−2πy

−24 ∗ 6
π

e−2π( 6
π
+δ) ≤ δ ≤ 24 ∗ 6

π
e−2π( 6

π
+δ)

−24 ∗ 6
π

e−12e−2πδ ≤ δ ≤ 24 ∗ 6
π

e−12e−2πδ

−24 ∗ 6
π

e−12 ≤ e2πδδ ≤ 24 ∗ 6
π

e−12

e2πδ ≈ 1 since delta is very small and e0 = 1

−24 ∗ 6
π

e−12 ≤ δ ≤ 24 ∗ 6
π

e−12

|δ| ≤ 24 ∗ 6
π

e−12 ≈ .00028

|y − 6

π
| ≤ 24 ∗ 6

π
e−12 ≈ .00028

□
Therefore, by Theorem 4.1 and Theorem 4.2, we can conclude that all of the zeros of E2(z)

can be translated back into D and lie on the curve bounded above and below by

|y − 6

π
| ≤ 24 ∗ 6

π
e−12 ≈ .00028 .
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Figure 4.1. Graph of Im(h(z)) = 0

Figure 4.2. Zoomed in graph of Im(h(z)) = 0 below D
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Figure 4.3. Zoomed in graph of Im(h(z)) = 0 in D

Figure 4.4. SL2(Z) Translated Zeros of E2(z) = 0 into D
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Figure 4.5. Plot of Translated Zeros of E2(z) = 0 and Im(h(z)) = 0 in D


