Zeros of the Eisenstein Series

Rachael Wood
Harding University
July 25,2013

Basic Definitions

- Throughout the presentation, $z=x+i y$.
- $\mathbb{H}=\{z \in \mathbb{C}: y>0\}$
- $\mathbb{D}=\left\{z \in \mathbb{H}:|z| \geq 1\right.$ and $\left.-\frac{1}{2} \leq x \leq \frac{1}{2}\right\}$
- $\mathbb{G}=\left\{z \in \mathbb{H}:-\frac{1}{2} \leq x \leq \frac{1}{2}\right\}$
- $S L_{2}(\mathbb{Z})$ is the group of matrices where $\gamma \in S L_{2}(\mathbb{Z}), \gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where $a d-b c=1$ and $a, b, c, d \in \mathbb{Z}$
- If $\gamma \in S L_{2}(\mathbb{Z}): \gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $\gamma(z)=\frac{a z+b}{c z+d}$.

Introduction to $E_{2 k}(z)$

This presentation will deal primarily with the Eisenstein Series of Weight 2 k . These are the functions which have the Fourier expansions:

$$
E_{2 k}(z)=1+\gamma_{2 k} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) e^{2 \pi i n z}
$$

where

$$
\gamma_{2 k}=(-1)^{k} \frac{4 k}{B_{k}}
$$

B_{k} is the k-th Bernoulli number, and $\sigma_{2 k-1}(n)=\sum_{a \mid n} a^{2 k-1}$ When $k \geq 2, E_{2 k}(z)$ is a Modular Form for $S L_{2}(\mathbb{Z})$.

Modular Forms

To be a modular form for $S L_{2}(\mathbb{Z}), E_{2 k}(z)$ must be holomorphic on \mathbb{H}, including ∞, and satisfy the relations

$$
(c z+d)^{2 k} f(z)=f\left(\frac{a z+b}{c z+d}\right) \text { for all }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z})
$$

- F.K.C Rankin and Swinnerton-Dyer (1970)

Quasimodular Forms

When $\mathrm{k}=1, E_{2}(z)$ is known as a quasimodular form, which fufills the following relation:

$$
E_{2}\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{2} E_{2}(z)-\frac{6}{\pi} i c(c z+d) .
$$

The Fourier expansion of $E_{2}(z)$ is given by

$$
E_{2}=1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) e^{2 \pi i n z}
$$

Zeros of $E_{2}(z)$

- Basraoui and Sebbar (2012)
- $E_{2}(z)=0$ doesn't have any solutions within \mathbb{D}.
- $E_{2}(z)=0$ has infinitely many zeros in \mathbb{G}
- Not much else is known about their general distribution or location.

Graph of $E_{2}(z)=0$

Numerical Output of $E_{2}(z)=0$

Numerical Output of $E_{2}(z)=0$

(-0.4999999999999621, 0.13091903039678807$)$

Numerical Output of $E_{2}(z)=0$

(-0.4999999999999621, 0.13091903039678807)
(-0.4999999999999621) is very close approximation to $-\frac{1}{2}$

Numerical Output of $E_{2}(z)=0$

(-0.4999999999999621, 0.13091903039678807)
(-0.4999999999999621) is very close approximation to $-\frac{1}{2}$
(-0.3333258907443707, 0.0581819236539682)

Numerical Output of $E_{2}(z)=0$

(-0.4999999999999621, 0.13091903039678807)
(-0.4999999999999621) is very close approximation to $-\frac{1}{2}$
(-0.3333258907443707, 0.0581819236539682)
(-0.3333258907442707) is very close approximation to $-\frac{1}{3}$

Numerical Output of $E_{2}(z)=0$

(-0.4999999999999621, 0.13091903039678807)
(-0.4999999999999621) is very close approximation to $-\frac{1}{2}$ (-0.3333258907443707, 0.0581819236539682)
(-0.3333258907442707) is very close approximation to $-\frac{1}{3}$
(-0.24999517436865332, 0.03272491502484815)

Numerical Output of $E_{2}(z)=0$

(-0.4999999999999621, 0.13091903039678807)
(-0.4999999999999621) is very close approximation to $-\frac{1}{2}$
(-0.3333258907443707, 0.0581819236539682)
(-0.3333258907442707) is very close approximation to $-\frac{1}{3}$
(-0.24999517436865332, 0.03272491502484815)
(-0.24999517436865332) is a very close approximation to $-\frac{1}{4}$

Numerical Output of $E_{2}(z)=0$

(-0.4999999999999621, 0.13091903039678807)
(-0.4999999999999621) is very close approximation to $-\frac{1}{2}$
(-0.3333258907443707, 0.0581819236539682)
(-0.3333258907442707) is very close approximation to $-\frac{1}{3}$
(-0.24999517436865332, 0.03272491502484815)
(-0.24999517436865332) is a very close approximation to $-\frac{1}{4}$
(-0.19999706592659725, 0.020942992285893466$)$

Numerical Output of $E_{2}(z)=0$

(-0.4999999999999621, 0.13091903039678807)
(-0.4999999999999621) is very close approximation to $-\frac{1}{2}$
(-0.3333258907443707, 0.0581819236539682)
(-0.3333258907442707) is very close approximation to $-\frac{1}{3}$
(-0.24999517436865332, 0.03272491502484815)
(-0.24999517436865332) is a very close approximation to $-\frac{1}{4}$
(-0.19999706592659725, 0.020942992285893466)
(-0.19999706592659725) is a very close approximation to $-\frac{1}{5}$

Numerical Output of $E_{2}(z)=0$

(-0.4999999999999621, 0.13091903039678807)
(-0.4999999999999621) is very close approximation to $-\frac{1}{2}$
(-0.3333258907443707, 0.0581819236539682)
(-0.3333258907442707) is very close approximation to $-\frac{1}{3}$
(-0.24999517436865332, 0.03272491502484815)
(-0.24999517436865332) is a very close approximation to $-\frac{1}{4}$
(-0.19999706592659725, 0.020942992285893466)
(-0.19999706592659725) is a very close approximation to $-\frac{1}{5}$ (-0.400001820482515, 0.020946451273604345$)$

Numerical Output of $E_{2}(z)=0$

(-0.4999999999999621, 0.13091903039678807)
(-0.4999999999999621) is very close approximation to $-\frac{1}{2}$
(-0.3333258907443707, 0.0581819236539682)
(-0.3333258907442707) is very close approximation to $-\frac{1}{3}$
(-0.24999517436865332, 0.03272491502484815)
(-0.24999517436865332) is a very close approximation to $-\frac{1}{4}$
(-0.19999706592659725, 0.020942992285893466)
(-0.19999706592659725) is a very close approximation to $-\frac{1}{5}$
(-0.400001820482515, 0.020946451273604345$)$
(-0.400001820480515) is a very close approximation to $-\frac{2}{5}$

Numerical Output of $E_{2}(z)=0$

(-0.4999999999999621, 0.13091903039678807)
(-0.4999999999999621) is very close approximation to $-\frac{1}{2}$
(-0.3333258907443707, 0.0581819236539682)
(-0.3333258907442707) is very close approximation to $-\frac{1}{3}$
(-0.24999517436865332, 0.03272491502484815)
(-0.24999517436865332) is a very close approximation to $-\frac{1}{4}$
(-0.19999706592659725, 0.020942992285893466)
(-0.19999706592659725) is a very close approximation to $-\frac{1}{5}$ (-0.400001820482515, 0.020946451273604345)
(-0.400001820480515) is a very close approximation to $-\frac{2}{5}$ And this pattern continues

$$
\begin{aligned}
& 0,-\frac{1}{2}, \frac{1}{2},-\frac{1}{3}, \frac{1}{3},-\frac{1}{4}, \frac{1}{4},-\frac{2}{5},-\frac{1}{5}, \frac{1}{5}, \frac{2}{5}, \\
& -\frac{1}{6}, \frac{1}{6},-\frac{3}{7},-\frac{2}{7},-\frac{1}{7}, \frac{1}{7}, \frac{2}{7}, \frac{3}{7},-\frac{3}{8},-\frac{1}{8}, \frac{1}{8}, \frac{3}{8}, \\
& -\frac{4}{9},-\frac{2}{9},-\frac{1}{9}, \frac{1}{9}, \frac{2}{9}, \frac{4}{9},-\frac{3}{10},-\frac{1}{10}, \frac{1}{10}, \frac{3}{10}, \ldots \ldots . .
\end{aligned}
$$

- Now we switch our focus from $E_{2}(z)$ to $h(z)$.

$$
h(z)=z+\frac{6}{\pi i E_{2}(z)}
$$

The function $h(z)$ is equivariant, which means that for

$$
h(\gamma z)=\gamma h(z) \text { for } \gamma \in S L_{2}(\mathbb{Z})
$$

Theorem 1

If $E_{2}\left(z_{0}\right)=0$ then $h\left(\gamma z_{0}\right)=\frac{a}{c}$ for $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
Conversely, if $h\left(\tau_{0}\right)=\frac{a}{c}$ with coprime a, c, then $E_{2}\left(\gamma^{-1} \tau_{0}\right)=0$ for $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

Consider the case when $E_{2}\left(z_{0}\right)=0$ (so $\left.h\left(z_{0}\right)=\infty\right)$, and let $z=\gamma z_{0}$. Note that $\gamma \infty=\frac{a}{c}$.
Then

$$
h\left(\gamma z_{0}\right)=\gamma h\left(z_{0}\right)=\gamma \infty=\frac{a}{c} .
$$

Conversely, suppose $h\left(\tau_{0}\right)=\frac{a}{c}$. Then
$h\left(\gamma^{-1} \tau_{0}\right)=\gamma^{-1} h\left(\tau_{0}\right)=\gamma^{-1} \frac{a}{c}=\infty$, so $E_{2}\left(\gamma^{-1} \tau_{0}\right)=0$.

Graphs of $\operatorname{Im}(h(z))=0$

Since $h(z)$ is rational only when $E_{2}(z)=0$, by graphing $\operatorname{Im}(h(z))=0$, all of the solutions to $E_{2}(z)=0$ will be plotted along with some other values.

What would happen if we transformed the zeros of E_{2} into \mathbb{D} ?

Graph of

$\operatorname{Im}(h(z))=0$ and (some of) the translated zeros of E_{2}.

When is $\operatorname{Im}(h(z))=0$ in \mathbb{D} ?

Theorem 2: The real values of the function $h(z)$ which occur in the fundamental domain D occur only in the small strip
$|y-6 / \pi|<.00028$.

Results

- Our initial conjecture that values of $\operatorname{Re}\left(E_{2}(z)=0\right)$ are rational numbers was incorrect. However, we do know that values of $\operatorname{Re}\left(E_{2}(z)=0\right)$ are very close to rational numbers with small denominators.
- The curve in the \mathbb{D} where $\operatorname{Im}(h(z))=0$ is the generating curve for all the "almost-circles" in \mathbb{H} under $S L_{2}(\mathbb{Z})$.
- When the zeros of $E_{2}(z)$ are translated into \mathbb{D}, they lie on the curve where $\operatorname{Im}(h(z))=0$
- The real values of the function $h(z)$ which occur in the fundamental domain D occur only in the small strip $|y-6 / \pi|<.00028$.
- Lots of great experience and exposure to different areas of mathematics! :)

Acknowledgements

- My wonderful mentors Dr. Matthew Young and Dr. Sheng-Chi Liu!
- Funded by the National Science Foundation and Texas A\&M University

