Computing the Tropical \mathcal{A} -discriminant

Bithiah Yuan University of Hawaii at Hilo

(日)

Agenda

- 1 Project
- **2** Algorithm for *n*-variate (n + 4)-nomials
- 8 Future Work

同下 イヨト イヨト

э

 \mathcal{A} -discriminant Variety: Let $\mathcal{A} = \{a_1, a_2, ..., a_t\} \subseteq \mathbb{Z}^n$. $\nabla_{\mathcal{A}}$ is the closure of

$$\left\{(c_1,...,c_t)\in (\mathbb{C}^*)^n: f(x)=\sum_{i=1}^t c_i x^{a_i} ext{ has a degenerate root}
ight\}$$

 \star We are interested in *n*-variate (*n* + 4)-nomials

3

 \mathcal{A} -discriminant Variety: Let $\mathcal{A} = \{a_1, a_2, ..., a_t\} \subseteq \mathbb{Z}^n$. $\nabla_{\mathcal{A}}$ is the closure of

$$\left\{(c_1,...,c_t)\in (\mathbb{C}^*)^n: f(x)=\sum_{i=1}^t c_i x^{a_i} ext{ has a degenerate root}
ight\}$$

- \star We are interested in *n*-variate (*n* + 4)-nomials
 - Look at the connected components of $\mathbb{R}^t \setminus \nabla_{\mathcal{A}}$ called the **chambers**

 \mathcal{A} -discriminant Variety: Let $\mathcal{A} = \{a_1, a_2, ..., a_t\} \subseteq \mathbb{Z}^n$. $\nabla_{\mathcal{A}}$ is the closure of

$$\left\{(c_1,...,c_t)\in (\mathbb{C}^*)^n: f(x)=\sum_{i=1}^t c_i x^{a_i} ext{ has a degenerate root}
ight\}$$

 \star We are interested in *n*-variate (*n* + 4)-nomials

- Look at the connected components of $\mathbb{R}^t \setminus \nabla_{\mathcal{A}}$ called the **chambers**
- Visualize the topology of positive zero set of polynomials \rightarrow Count the number of real roots \rightarrow Approximate real roots

・ 同 ト ・ ヨ ト ・ ヨ ト

Zero set on Logarithmic paper

For any polynomial of the form $f(x) = \sum_{i=1}^{n} c_i x^{a_i}$, **Amoeba(f)**:= { $Log|x| | x_i \in \mathbb{C}^*, f(x) = 0$ }

Example: Let
$$f(x) = c_1 + c_2 x^{404} + c_3 x^{405} + c_4 x^{808}$$

 $\mathcal{A} = \{0, 404, 405, 808\}$

 \star $\mathcal{A}\text{-discriminant},$ $\Delta_{\mathcal{A}}$ has 609 monomial terms and degree 1604

 \star Amoeba($\Delta_{\mathcal{A}}) = \text{Log}|\nabla_{\mathcal{A}}|$ is a discriminant amoeba, and can be parametrized easily via the Horn-Kapranov Uniformization

Tropical A-Discriminant

 \star Piecewise-linear polyhedral approximation of Amoeba($\Delta_{\mathcal{A}})$ \star Gives us computationally tractable approximation of the discriminant chambers

Tropical A-discriminant

 \star Provide results on the topology of real zero sets and faster homotopies preserving the number of real roots via the GKZ-correspondence

* For *n*-variate *t*-nomials:

Tropical $\Delta_{\mathcal{A}} \in \mathbb{R}^t$ approximates $\rightarrow \mathsf{Amoeba}(\Delta_{\mathcal{A}}) \in \mathbb{R}^t$

* After Reduction:

 $\begin{array}{l} \text{Tropical } \overline{\Delta}_{\mathcal{A}} \in \mathbb{R}^{t-n-1} \text{ approximates} \\ \rightarrow \text{Amoeba}(\overline{\Delta}_{\mathcal{A}}) \in \mathbb{R}^{t-n-1} \end{array}$

Example:

* For 1-variate (n + 4)-nomials:

Tropical $\overline{\Delta}_{\mathcal{A}} \in \mathbb{R}^3$ approximates $\rightarrow \mathsf{Amoeba}(\overline{\Delta}_{\mathcal{A}}) \in \mathbb{R}^3$

伺い イヨト イヨト

Algorithm for *n*-variate (n + 4)-nomials

Input: $\mathcal{A} \subset \mathbb{Z}^n$ of cardinality n + 4

Output: Tropical A-discriminant, $\tau(X_A^*)$

- 1 Find the basis for the right null space B corresponding to $\hat{\mathcal{A}}$
- 2 Compute the intersections of the $-\beta_i$'s to find the vertices in \mathcal{H}_B
- **3** Take the linear combination of the $-\beta_i$'s to find the cones
- Compute the 2-dimension cones that make up the walls corresponding to vertices of H_B
- **5** The tropical \mathcal{A} -discriminant is the union of the walls

Let
$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4$$
.

・ロト ・回ト ・ヨト ・ヨト

æ

Let
$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4$$
.

The Horn-Kapranov Uniformization starts with $A = [0 \ 1 \ 2 \ 3 \ 4]$

3

Let
$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4$$
.

The Horn-Kapranov Uniformization starts with $\mathcal{A} = \begin{bmatrix} 0 \ 1 \ 2 \ 3 \ 4 \end{bmatrix}$ We need.. $\hat{\mathcal{A}} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \end{bmatrix}$

伺 と く ヨ と く ヨ と

Let
$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4$$
.

The Horn-Kapranov Uniformization starts with $\mathcal{A} = \begin{bmatrix} 0 \ 1 \ 2 \ 3 \ 4 \end{bmatrix}$ We need.. $\hat{\mathcal{A}} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \end{bmatrix}$

We find the basis for the right null space B corresponding to $\hat{\mathcal{A}}$

Let
$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4$$
.

The Horn-Kapranov Uniformization starts with $\mathcal{A} = \begin{bmatrix} 0 \ 1 \ 2 \ 3 \ 4 \end{bmatrix}$ We need.. $\hat{\mathcal{A}} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \end{bmatrix}$

We find the basis for the right null space *B* corresponding to \hat{A}

$$\mathsf{B} = \begin{bmatrix} -4 & -3 & -2 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

直 と く ヨ と く ヨ と

1-variate (n + 4)-nomial Let $\mathcal{H}_B = \{ [\lambda] \in \mathbb{P}^{t-n-2}_{\mathbb{C}} \mid \lambda \cdot \beta_i = 0 \text{ for some } i \in \{1, ..., t\} \}.$

* When λ approaches the line corresponding to β_i and H-K-U blows up in the direction of $-\beta_i$, which are the rays

Let
$$\mathcal{H}_B = \{ [\lambda] \in \mathbb{P}^{t-n-2}_{\mathbb{C}} \mid \lambda \cdot \beta_i = 0 \text{ for some } i \in \{1, ..., t\} \}.$$

* When λ approaches the line corresponding to β_i and H-K-U blows up in the direction of $-\beta_i$, which are the **rays**

$$\mathsf{B} = \begin{bmatrix} 3 & 2 & 1 \\ -4 & -3 & -2 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{array}{c} -\beta_1 = (-3, -2, -1) \\ -\beta_2 = (4, 3, 2) \\ -\beta_3 = (0, 0, -1) \\ -\beta_4 = (0, -1, 0) \\ -\beta_5 = (-1, 0, 0) \end{array}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

æ

* A (convex) **cone** in \mathbb{R}^t is any subset closed under nonnegative linear combinations.

 \star A (convex) **cone** in \mathbb{R}^t is any subset closed under nonnegative linear combinations.

* Let W_v denote the cone generated by all $-\beta_i$ and β_i is normal to a hyperplane of \mathcal{H}_B incident to the vertices, v.

伺 と く ヨ と く ヨ と …

* A (convex) **cone** in \mathbb{R}^t is any subset closed under nonnegative linear combinations.

* Let W_{ν} denote the cone generated by all $-\beta_i$ and β_i is normal to a hyperplane of \mathcal{H}_B incident to the vertices, v. * We call W_{ν} a wall of \mathcal{A} .

* Each wall is a 2-dimensional cone

Example:

 $\begin{array}{l} \beta_1=(3,2,1),\ \beta_2=(-4,-3,-2)\\ \star \mbox{ Vertex of } -\beta_1,-\beta_2 \mbox{ is } (1,-2,1) \mbox{ where the linear combinations of } -\beta_1,-\beta_2 \mbox{ make up the cone generated by } \\ \beta_1,\beta_2 \end{array}$

* Cone
$$(-\beta_1, -\beta_2)$$
 = Cone $((-3, -2, -1), (4, 3, 2))$ =
{ $(-3, -2, -1)s + (4, 3, 2)t | s, t \ge 0$ }

The **Tropical Discriminant** is the cone over the logarithmic limit set of Δ_A .

* We can look at ∇_A and find its amoeba by taking the $Log|\cdot|$ * Then we can look at how the amoeba intersects a sphere * The intersections yield a union of pieces of the great hemispheres in the limit as the radius goes to infinity * If we connect the union of pieces to the origin we will get $\tau(X_A^*)$

• • = • • = •

Lemma 1.13 (Phillipson, Rojas)

The **Tropical Discriminant**, $\tau(X_A^*)$, is exactly the union of W_v over all vertices v of \mathcal{H}_B .

Lemma 1.13 (Phillipson, Rojas)

The **Tropical Discriminant**, $\tau(X^*_{\mathcal{A}})$, is exactly the union of W_v over all vertices v of \mathcal{H}_B .

→ 3 → 4 3

Movie

▲□ → ▲圖 → ▲ 画 → ▲ 画 → →

æ

 \star We will develop a software package to quickly compute which $\mathcal A\text{-discriminant}$ chamber contains the (n+4)-nomials

Input: $A \subset \mathbb{Z}^n$ of cardinality n + 4 and the coefficient vector c of a given polynomial f

Output: Which chamber cone contain f

References

Bastani, Hillar, Popov & Rojas, 2011

Randomization, Sums of Squares, Near-Circuits, and Faster Real Root Counting

Contemporary Mathematics

Phillipson & Rojas

 $\mathcal A\text{-}\mathsf{Discriminants},$ and their Cuttings, for Complex Exponents

伺 ト く ヨ ト く ヨ ト

Thank you for listening!

 \star Funded by the National Science Foundation and Texas A&M University

Thank you:

 \star Mentors: Dr. J. Maurice Rojas, Alperen Ergur, and Kaitlyn Phillipson

* Joann Coronado and Samuel Pérez Ayala

