Computing the Tropical \mathcal{A}-discriminant

Bithiah Yuan

University of Hawaii at Hilo

Agenda

(1) Project
(2) Algorithm for n-variate $(n+4)$-nomials
(3) Future Work

Project

\mathcal{A}-discriminant Variety: Let $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{t}\right\} \subseteq \mathbb{Z}^{n}$.
$\nabla_{\mathcal{A}}$ is the closure of
$\left\{\left(c_{1}, \ldots, c_{t}\right) \in\left(\mathbb{C}^{*}\right)^{n}: f(x)=\sum_{i=1}^{t} c_{i} x^{a_{i}}\right.$ has a degenerate root $\}$
\star We are interested in n-variate $(n+4)$-nomials

Project

\mathcal{A}-discriminant Variety: Let $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{t}\right\} \subseteq \mathbb{Z}^{n}$.
$\nabla_{\mathcal{A}}$ is the closure of
$\left\{\left(c_{1}, \ldots, c_{t}\right) \in\left(\mathbb{C}^{*}\right)^{n}: f(x)=\sum_{i=1}^{t} c_{i} x^{a_{i}}\right.$ has a degenerate root $\}$

* We are interested in n-variate $(n+4)$-nomials
- Look at the connected components of $\mathbb{R}^{t} \backslash \nabla_{\mathcal{A}}$ called the chambers

Project

\mathcal{A}-discriminant Variety: Let $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{t}\right\} \subseteq \mathbb{Z}^{n}$.
$\nabla_{\mathcal{A}}$ is the closure of
$\left\{\left(c_{1}, \ldots, c_{t}\right) \in\left(\mathbb{C}^{*}\right)^{n}: f(x)=\sum_{i=1}^{t} c_{i} x^{a_{i}}\right.$ has a degenerate root $\}$

* We are interested in n-variate $(n+4)$-nomials
- Look at the connected components of $\mathbb{R}^{t} \backslash \nabla_{\mathcal{A}}$ called the chambers
- Visualize the topology of positive zero set of polynomials \rightarrow Count the number of real roots \rightarrow Approximate real roots

Zero set on Logarithmic paper

For any polynomial of the form $f(x)=\sum_{i=1}^{n} c_{i} x^{a_{i}}$,
Amoeba(f): $=\left\{\log |x| \mid x_{i} \in \mathbb{C}^{*}, f(x)=0\right\}$
Example: Let $f(x)=c_{1}+c_{2} x^{404}+c_{3} x^{405}+c_{4} x^{808}$ $\mathcal{A}=\{0,404,405,808\}$
$\star \mathcal{A}$-discriminant, $\Delta_{\mathcal{A}}$ has 609 monomial terms and degree 1604
$\star \operatorname{Amoeba}\left(\Delta_{\mathcal{A}}\right)=\log \left|\nabla_{\mathcal{A}}\right|$ is a discriminant amoeba, and can be parametrized easily via the HornKapranov Uniformization

Tropical \mathcal{A}-Discriminant

\star Piecewise-linear polyhedral approximation of $\operatorname{Amoeba}\left(\Delta_{\mathcal{A}}\right)$ \star Gives us computationally tractable approximation of the discriminant chambers

Example: Let $f(x, y)=c_{0}+c_{1} x+c_{2} y+c_{3} x^{4} y+c_{4} x y^{4}$ be a $(n+3)$-nomial for $c \in(\mathbb{C} \backslash\{0\})^{n+3}$.

Tropical \mathcal{A}-discriminant

\star Provide results on the topology of real zero sets and faster homotopies preserving the number of real roots via the GKZ-correspondence

Project

* For n-variate t-nomials:

Tropical $\Delta_{\mathcal{A}} \in \mathbb{R}^{t}$ approximates $\rightarrow \operatorname{Amoeba}\left(\Delta_{\mathcal{A}}\right) \in \mathbb{R}^{t}$

* After Reduction:

Tropical $\bar{\Delta}_{\mathcal{A}} \in \mathbb{R}^{t-n-1}$ approximates
$\rightarrow \operatorname{Amoeba}\left(\bar{\Delta}_{\mathcal{A}}\right) \in \mathbb{R}^{t-n-1}$

Example:

* For 1-variate $(n+4)$-nomials:

Tropical $\bar{\Delta}_{\mathcal{A}} \in \mathbb{R}^{3}$ approximates $\rightarrow \operatorname{Amoeba}\left(\bar{\Delta}_{\mathcal{A}}\right) \in \mathbb{R}^{3}$

Algorithm for n-variate $(n+4)$-nomials

Input: $\mathcal{A} \subset \mathbb{Z}^{n}$ of cardinality $n+4$
Output: Tropical \mathcal{A}-discriminant, $\tau\left(X_{\mathcal{A}}^{*}\right)$
(1) Find the basis for the right null space B corresponding to $\hat{\mathcal{A}}$
(2) Compute the intersections of the $-\beta_{i}$'s to find the vertices in \mathcal{H}_{B}
(3) Take the linear combination of the $-\beta_{i}$'s to find the cones
(4) Compute the 2-dimension cones that make up the walls corresponding to vertices of \mathcal{H}_{B}
(5) The tropical \mathcal{A}-discriminant is the union of the walls

1-variate $(n+4)$-nomial

Let $f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}$.

1-variate $(n+4)$-nomial

Let $f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}$.
The Horn-Kapranov Uniformization starts with $\mathcal{A}=\left[\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right]$

1-variate $(n+4)$-nomial

Let $f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}$.
The Horn-Kapranov Uniformization starts with $\mathcal{A}=\left[\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right]$
We need.. $\hat{\mathcal{A}}=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4\end{array}\right]$

1-variate $(n+4)$-nomial

Let $f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}$.
The Horn-Kapranov Uniformization starts with $\mathcal{A}=\left[\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right]$
We need.. $\hat{\mathcal{A}}=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4\end{array}\right]$
We find the basis for the right null space B corresponding to $\hat{\mathcal{A}}$

1-variate $(n+4)$-nomial

Let $f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}$.
The Horn-Kapranov Uniformization starts with $\mathcal{A}=\left[\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right]$
We need.. $\hat{\mathcal{A}}=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4\end{array}\right]$
We find the basis for the right null space B corresponding to $\hat{\mathcal{A}}$
$\mathrm{B}=\left[\begin{array}{ccc}3 & 2 & 1 \\ -4 & -3 & -2 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$

1-variate $(n+4)$-nomial

Let $\mathcal{H}_{B}=\left\{[\lambda] \in \mathbb{P}_{\mathbb{C}}^{t-n-2} \mid \lambda \cdot \beta_{i}=0\right.$ for some $i \in\{1, \ldots, t\}$.

* When λ approaches the line corresponding to β_{i} and H-K-U blows up in the direction of $-\beta_{i}$, which are the rays

1-variate $(n+4)$-nomial

Let $\mathcal{H}_{B}=\left\{[\lambda] \in \mathbb{P}_{\mathbb{C}}^{t-n-2} \mid \lambda \cdot \beta_{i}=0\right.$ for some $\left.i \in\{1, \ldots, t\}\right\}$.
\star When λ approaches the line corresponding to β_{i} and $\mathrm{H}-\mathrm{K}-\mathrm{U}$ blows up in the direction of $-\beta_{i}$, which are the rays

$$
\mathrm{B}=\left[\begin{array}{ccc}
3 & 2 & 1 \\
-4 & -3 & -2 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \quad \begin{aligned}
& -\beta_{1}=(-3,-2,-1) \\
& -\beta_{2}=(4,3,2) \\
& -\beta_{3}=(0,0,-1) \\
& -\beta_{4}=(0,-1,0) \\
& -\beta_{5}=(-1,0,0)
\end{aligned}
$$

1-variate $(n+4)$-nomial

1-variate $(n+4)$-nomial

\star A (convex) cone in \mathbb{R}^{t} is any subset closed under nonnegative linear combinations.

1-variate $(n+4)$-nomial

\star A (convex) cone in \mathbb{R}^{t} is any subset closed under nonnegative linear combinations.

* Let W_{v} denote the cone generated by all $-\beta_{i}$ and β_{i} is normal to a hyperplane of \mathcal{H}_{B} incident to the vertices, v.

1-variate $(n+4)$-nomial

\star A (convex) cone in \mathbb{R}^{t} is any subset closed under nonnegative linear combinations.
\star Let W_{v} denote the cone generated by all $-\beta_{i}$ and β_{i} is normal to a hyperplane of \mathcal{H}_{B} incident to the vertices, v. * We call W_{v} a wall of \mathcal{A}.

1-variate $(n+4)$-nomial

* Each wall is a 2-dimensional cone

Example:

$\beta_{1}=(3,2,1), \beta_{2}=(-4,-3,-2)$
\star Vertex of $-\beta_{1},-\beta_{2}$ is $(1,-2,1)$ where the linear combinations of $-\beta_{1},-\beta_{2}$ make up the cone generated by β_{1}, β_{2}
$\star \operatorname{Cone}\left(-\beta_{1},-\beta_{2}\right)=\operatorname{Cone}((-3,-2,-1),(4,3,2))=$ $\{(-3,-2,-1) s+(4,3,2) t \mid s, t \geq 0\}$

Tropical Discriminant

The Tropical Discriminant is the cone over the logarithmic limit set of $\Delta_{\mathcal{A}}$.
\star We can look at $\nabla_{\mathcal{A}}$ and find its amoeba by taking the $\log |\cdot|$
\star Then we can look at how the amoeba intersects a sphere
\star The intersections yield a union of pieces of the great hemispheres in the limit as the radius goes to infinity \star If we connect the union of pieces to the origin we will get $\tau\left(X_{\mathcal{A}}^{*}\right)$

1-variate $(n+4)$-nomial

Lemma 1.13 (Phillipson, Rojas)

The Tropical Discriminant, $\tau\left(X_{\mathcal{A}}^{*}\right)$, is exactly the union of W_{v} over all vertices v of \mathcal{H}_{B}.

1-variate $(n+4)$-nomial

Lemma 1.13 (Phillipson, Rojas)

The Tropical Discriminant, $\tau\left(X_{\mathcal{A}}^{*}\right)$, is exactly the union of W_{v} over all vertices v of \mathcal{H}_{B}.

Movie

Future Work

* We will develop a software package to quickly compute which \mathcal{A}-discriminant chamber contains the ($\mathrm{n}+4$)-nomials

Input: $\mathcal{A} \subset \mathbb{Z}^{n}$ of cardinality $n+4$ and the coefficient vector c of a given polynomial f

Output: Which chamber cone contain f

References

E
Bastani, Hillar, Popov \& Rojas, 2011
Randomization, Sums of Squares, Near-Circuits, and Faster Real Root Counting
Contemporary Mathematics
目 Phillipson \& Rojas
\mathcal{A}-Discriminants, and their Cuttings, for Complex Exponents

Thank you for listening!

\star Funded by the National Science Foundation and Texas A\&M University

Thank you:

\star Mentors: Dr. J. Maurice Rojas, Alperen Ergur, and Kaitlyn Phillipson

* Joann Coronado and Samuel Pérez Ayala

