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Abstract. This paper specifies some conditions as to when an integer m is locally repre-
sented by a positive definite diagonal integer-matrix ternary quadratic form Q at a prime p.
We use quadratic Gauss sums and a version of Hensel’s Lemma to count how many solutions
there are to the equivalence Q(~x) ≡ m (mod pk) for any k ≥ 0. Given that m is coprime
to the determinant of the Hessian matrix of Q, we can determine if m is locally represented
everywhere by Q in finitely many steps.

1. Introduction

One of the oldest questions in number theory is the question of when is an integer m is
globally represented by an integral quadratic form Q. In this paper, we focus on when Q
is a positive definite diagonal integer-matrix ternary quadratic form, meaning that Q can
written as Q(~x) = ax2 + by2 + cz2, where a, b, and c are positive integers and ~x = (x, y, z)T .
We say that m is (globally) represented by Q if there exists ~x ∈ Z3 such that Q(~x) = m.

In attempting to answer the question of when is m is globally represented by an integral
quadratic form Q, people considered the weaker condition of m being locally represented
(everywhere) by Q, meaning that m is locally represented at p for every prime p and there
exists ~x ∈ R3 such that Q(~x) = m. An integer m is locally represented by Q at the prime p
if for every nonnegative integer k there exists ~x ∈ Z3 such that Q(~x) ≡ m (mod pk).

It is not immediately apparent how one can check that m is locally represented everywhere
by Q, because it appears from the definition of locally represented everywhere that one would
have to check if m is locally represented by Q at infinitely-many primes. Actually, it is not
immediately apparent how to check if m is locally represented by Q at a given prime p,
because it appears from the definition of locally represented at p that one would need to
check for infinitely-many k ≥ 0 that there exists ~x ∈ Z3 such that Q(~x) ≡ m (mod pk).

The definition of an integer m being locally represented by Q at a prime p suggests that
we should count how many solutions there are to the equivalence Q(~x) ≡ m (mod pk) for
k ≥ 0. We use rpk,Q(m) to do this counting. For a positive integer n, we define rn,Q(m) as

rn,Q(m) = #
{
~x ∈ (Z/nZ)3 : Q(~x) ≡ m (mod n)

}
.

Clearly, m is locally represented by Q at p if and only if rpk,Q(m) > 0 for every k ≥ 0.
To compute rpk,Q(m), we use quadratic Gauss sums. Suppose a, q ∈ Z with q > 0. The

quadratic Gauss sum G

(
a

q

)
over Z/qZ is defined by

G

(
a

q

)
:=

∑
j (mod q)

e

(
aj2

q

)
=
∑

j∈Z/qZ

e

(
aj2

q

)
=

q−1∑
j=0

e

(
aj2

q

)
,

1
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where e(w) = e2πiw. Throughout this paper, we abbreviate e2πiw as e(w). Unless otherwise
specified, in this paper, the term Gauss sum will be taken to refer to a quadratic Gauss sum.
Many Gauss sums have closed-form evaluations. Some of these formulas can be found in
Section 2.

In Section 3, we show that

rpk,Q(m) =
1

pk

pk−1∑
t=0

e

(
−mt
pk

)
G

(
at

pk

)
G

(
bt

pk

)
G

(
ct

pk

)
.(1.1)

Given certain conditions on a, b, c, and m, we can find closed-form formulas for rpk,Q(m).
As an example, if p is an odd prime, p - abcm, and k ≥ 1, we can explicitly evaluate (1.1)
and get

rpk,Q(m) = p2k
(

1 +
1

p

(
−abcm
p

))
,

where

(
·
p

)
is the Legendre symbol. Other explicit formulas for rpk,Q(m) appear in Section 3.

2. Formulas for Gauss Sums

For all of the formulas in this section, take a to be an integer. The formulas in this section
are useful in computing rpk,Q(m). (See Section 3 to see how quadratic Gauss sums can be
used to compute rpk,Q(m).)

This first sum is not a quadratic Gauss sum but is used to compute Gauss sums and
rpk,Q(m).

Lemma 2.1. Let a, q ∈ Z and q > 0. Then
q−1∑
t=0

e

(
at

q

)
=

{
q, if a ≡ 0 (mod q),

0, otherwise.

Proof. The lemma follows from the orthogonality of characters. �

Lemma 2.2. Suppose p is an odd prime and a ∈ Z.Then

G

(
a

p

)
=

p−1∑
t=0

(
1 +

(
t

p

))
e

(
at

p

)
.(2.1)

If p - a, then

G

(
a

p

)
=

p−1∑
t=0

(
t

p

)
e

(
at

p

)
.

Proof. The number of solutions modulo p of the congruence

j2 ≡ t (mod p)

is 1 +

(
t

p

)
. Therefore,

G

(
a

p

)
=

p−1∑
j=0

e

(
aj2

p

)
=

p−1∑
t=0

(
1 +

(
t

p

))
e

(
at

p

)
.
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When p - a,

G

(
a

p

)
=

p−1∑
t=0

(
t

p

)
e

(
at

p

)
follows from (2.1) and Lemma 2.1. �

Let q be a positive integer. Equations (2.2),(2.3), and (2.4) follow from the definition of
quadratic Gauss sums.

G

(
0

q

)
= q.(2.2)

G
(a

1

)
= 1.(2.3)

G
(a

2

)
=

{
0, if gcd(a, 2) = 1,

2, otherwise.
(2.4)

Lemma 2.3. Suppose k is a positive integer, p is a positive prime integer, and a 6= 0. Let `
be such that p` ‖ a. Let a = a0 · p` so that gcd(a0, p) = 1. If ` ≤ k, then

G

(
a

pk

)
= p`G

(
a0
pk−`

)
.(2.5)

Proof. By the definition of a quadratic Gauss sum,

G

(
a

pk

)
=

pk−1∑
j=0

e

(
aj2

pk

)
=

pk−1∑
j=0

e

(
a0 · p`j2

pk

)
=

pk−1∑
j=0

e

(
a0j

2

pk−`

)

= p`
pk−`−1∑
j=0

e

(
a0j

2

pk−`

)
= p`G

(
a0
pk−`

)
. �

Lemma 2.4. Suppose k ≥ 1 and p is an odd prime. Suppose gcd(a, p) = 1. Then

G

(
a

pk

)
= pk/2

(
a

pk

)
εpk ,

where

(
·
pk

)
is the Jacobi symbol and

εpk =

{
1, if pk ≡ 1 (mod 4),

i, if pk ≡ 3 (mod 4).

Proof. The lemma is a special case of Theorem 1.5.2 in [BEW98] on page 26. �

Lemma 2.5. Suppose k is a positive integer, p is an odd positive prime integer, and a 6= 0.
Let ` be such that p` ‖ a. Let a = a0 · p` so that gcd(a0, p) = 1. Then

G

(
a

pk

)
=

p
k, if k ≤ `,

p(k+`)/2
(
a0
pk−`

)
εpk−` , if k > `.
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Proof. If k ≤ `, then the result follows from the definition of a quadratic Gauss sum.
Suppose k > `. Using the definition of a quadratic Gauss sum and Lemmas 2.3 and 2.4,

G

(
a

pk

)
= p`G

(
a0
pk−`

)
= p`p(k−`)/2

(
a

pk−`

)
εpk−` = p(k+`)/2

(
a

pk−`

)
εpk−` . �

Lemma 2.6. Suppose gcd(a, 2) = 1 and k ≥ 2. Then

G
( a

2k

)
= 2k/2

(
2k

a

)
ρa,

where
( ·
a

)
is the Jacobi symbol and

ρa =

{
1 + i, if a ≡ 1 (mod 4),

1− i, if a ≡ 3 (mod 4).

Proof. See Equation 1.5.5 in Proposition 1.5.3 of [BEW98] on page 26. �

Lemma 2.7. Suppose k ≥ 2 is an integer and a 6= 0. Let ` be such that 2` ‖ a. Let a = a0 ·2`
so that gcd(a0, 2) = 1. Then

G
( a

2k

)
=


2k, if k ≤ `,

0, if k = `+ 1,

2(k+`)/2

(
2k−`

a0

)
ρa, if k > `+ 1.

Proof. If k ≤ `, then the result follows from the definition of a quadratic Gauss sum.
Suppose k = `+ 1, so k − ` = 1 and ` = k − 1. Using the definition of a quadratic Gauss

sum and Lemmas 2.3 and 2.6,

G
( a

2k

)
=

2k−1∑
j=0

e

(
aj2

2k

)
= 2k−1G

(a0
2

)
= 0.

Suppose k > ` + 1, so k − ` ≥ 2. Using the definition of a quadratic Gauss sum and
Lemmas 2.3 and 2.6,

G
( a

2k

)
= 2`G

( a0
2k−`

)
= 2`2(k−`)/2

(
2k−`

a

)
ρa = 2(k+`)/2

(
2k−`

a

)
ρa. �

3. Counting the Number of Local Solutions

Throughout this paper, Q(~x) is a positive definite diagonal ternary quadratic form such
that Q(~x) = ax2 +by2 +cz2, where a, b, and c are positive integers and ~x = (x, y, z)T . Recall
that the definition of an integer m being locally represented everywhere by Q suggests that
we should calculate rpk,Q(m), where p is a positive prime integer and k is a nonnegative
integer. Clearly, m is locally represented by Q at p if and only if rpk,Q(m) > 0 for every
k ≥ 0.

We restrict our attention to m ≥ 0, because given the quadratic form Q(~x) = ax2 + by2 +
cz2, where a, b, c are positive integers, there exists ~x ∈ R3 such that Q(~x) = m if and only if
m ≥ 0. The case in which k = 0 is trivial, because every integer m is congruent to 0 (mod 1),
and Z/Z contains exactly one element. Thus, r1,Q(m) = 1, and so we only consider k ≥ 1
for the remainder of this paper.
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We also only consider primitive quadratic forms so that gcd(a, b, c) = 1. The reason for
this is that if gcd(a, b, c) = d > 1, then the primitive quadratic form a

d
x2 + b

d
y2 + c

d
z2 gives

us enough information to determine which integers are (locally or globally) represented by
the quadratic form ax2 + by2 + cz2.

By Lemma 2.1,

1

pk

pk−1∑
t=0

e

(
(Q(~x)−m)t

pk

)
=

{
1, if Q(~x) ≡ m (mod pk),

0, otherwise.
(3.1)

Therefore,

rpk,Q(m) =
∑

~x∈(Z/pkZ)3

1

pk

pk−1∑
t=0

e

(
(Q(~x)−m)t

pk

)
(3.2)

=

pk−1∑
x=0

pk−1∑
y=0

pk−1∑
z=0

1

pk

pk−1∑
t=0

e

(
(ax2 + by2 + cz2 −m)t

pk

)
(3.3)

=
1

pk

pk−1∑
t=0

e

(
−mt
pk

)
G

(
at

pk

)
G

(
bt

pk

)
G

(
ct

pk

)
.(3.4)

Equation (3.4) shows that quadratic Gauss sums can be used to calculate rpk,Q(m). Methods
involving the fast Fourier transform or Hensel’s Lemma can be used to evaluate equation (3.4)
explicitly.

3.1. Using the Fast Fourier Transform.
The fast Fourier transform (FFT) can be used to relative quickly calculate rpk,Q(m) for

every m ∈ Z/pkZ. The FFT is a discrete Fourier transform (DFT) algorithm. Let f(t) be
a function from Z/nZ to C, where n is a positive integer. Then the DFT creates another

function f̂ : Z/nZ→ C in the following manner:

f̂(m) =
n−1∑
t=0

f(t) e

(
−mt
n

)
.

Note that if f : Z/pkZ→ C is defined by f(t) =
1

pk
G

(
at

pk

)
G

(
bt

pk

)
G

(
ct

pk

)
, then

rpk,Q(m) = f̂(m) =

pk−1∑
t=0

f(t) e

(
−mt
pk

)
.

Therefore, the FFT can be used to calculate rpk,Q(m) for every m ∈ Z/pkZ.

3.2. Using Hensel’s Lemma.
The following theorem is essentially a version of Hensel’s lemma specific to the quadratic

forms being considered in this paper.

Theorem 3.1. Let m be an integer and p be an odd positive prime integer. Suppose ~x0 =
(x0, y0, z0)

T ∈ Z3 is a solution to Q(~x) ≡ m (mod pk) for some k ≥ 1. If p - ax0, p - by0, or
p - cz0, then ~x0 = (x0, y0, z0)

T lifts to exactly p2 solutions to Q(~x) ≡ m (mod pk+1). That is,
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there are exactly p2 solutions to Q(~x) ≡ m (mod pk+1) of the form (x0 +x1p
k, y0 + y1p

k, z0 +
z1p

k)T , where x1, y1, z1 ∈ Z/pZ.

Proof. Without loss of generality, assume that p - ax0.
We first prove that there exists a solution to Q(~x) ≡ m (mod pk+1) of the form (x0 +

x1p
k, y0 + y1p

k, z0 + z1p
k)T . Because Q(~x0) ≡ m (mod pk), there exists ` ∈ Z such that

ax20 + by20 + cz20 = m+ `pk. For some x1, y1, z1 ∈ Z/pZ, observe that

a(x0 + pkx1)
2 + b(y0 + pky1)

2 + c(z0 + pkz1)
2 −m(3.5)

= (`+ 2ax0x1 + 2by0y1 + 2cz0z1)p
k + (ax21 + by21 + cz21)p2k(3.6)

≡ (`+ 2ax0x1 + 2by0y1 + 2cz0z1)p
k (mod pk+1).(3.7)

Let

x1 = (2ax0)
−1(−`− 2by0y1 − 2cz0z1),(3.8)

where 2ax0(2ax0)
−1 ≡ 1 (mod p) ⇐⇒ 2ax0(2ax0)

−1 = 1 + tp for some t ∈ Z. (Note that
(2ax0)

−1 exists since p - 2ax0.) Then

a(x0 + pkx1)
2 + b(y0 + pky1)

2 + c(z0 + pkz1)
2 −m(3.9)

≡ (`+ 2ax0x1 + 2by0y1 + 2cz0z1)p
k (mod pk+1)(3.10)

= (`+ 2ax0(2ax0)
−1(−`− 2by0y1 − 2cz0z1) + 2by0y1 + 2cz0z1)p

k (mod pk+1)(3.11)

= (`+ (1 + tp)(−`− 2by0y1 − 2cz0z1) + 2by0y1 + 2cz0z1)p
k (mod pk+1)(3.12)

= t(−`− 2by0y1 − 2cz0z1)p
k+1 (mod pk+1)(3.13)

≡ 0 (mod pk+1)(3.14)

⇐⇒ a(x0 + pkx1)
2 + b(y0 + pky1)

2 + c(z0 + pkz1)
2 ≡ m (mod pk+1).(3.15)

Thus, there exists a solution to Q(~x) ≡ m (mod pk+1) of the form (x0 + x1p
k, y0 + y1p

k, z0 +
z1p

k)T .
Conversely, if a(x0 + pkx1)

2 + b(y0 + pky1)
2 + c(z0 + pkz1)

2 ≡ m (mod pk+1), then by
using (3.7), we see that

(`+ 2ax0x1 + 2by0y1 + 2cz0z1)p
k ≡ 0 (mod pk+1)(3.16)

⇐⇒ `+ 2ax0x1 + 2by0y1 + 2cz0z1 ≡ 0 (mod p)(3.17)

⇐⇒ 2ax0x1 ≡ −`− 2by0y1 − 2cz0z1 (mod p)(3.18)

⇐⇒ x1 ≡ (2ax0)
−1(−`− 2by0y1 − 2cz0z1) (mod p).(3.19)

From (3.19), we see that x1 ∈ Z/pZ is uniquely determined by the choices of y1 and z1.
Because there are no restrictions on y1, z1 ∈ Z/pZ, there are p choices for y1 and p choices
for z1. Therefore, there are exactly p2 solutions to Q(~x) ≡ m (mod pk+1) of the form
(x0 + x1p

k, y0 + y1p
k, z0 + z1p

k)T , where x1, y1, z1 ∈ Z/pZ. �

Corollary 3.2. Let p be an odd positive prime integer. Suppose that {(x1, y1, z1)T , . . . , (xn, yn, zn)T}
is the set of the n = rpk,Q(m) solutions in (Z/pkZ)3 to Q(~x) ≡ m (mod pk), and suppose
that p - axj, p - byj, or p - czj for each j ∈ Z, 1 ≤ j ≤ rpk,Q(m). Then there are exactly
rpk,Q(m) · p2` solutions in (Z/pk+`Z)3 to Q(~x) ≡ m (mod pk+`) for ` ≥ 0. Furthermore, each
of the solutions (x0, y0, z0)

T in (Z/pk+`Z)3 to Q(~x) ≡ m (mod pk+`) satisfies the property
that p - ax0, p - by0, or p - cz0.
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Proof. The corollary follows from a simple induction proof using Theorem 3.1. �

Theorem 3.3. Let p be an odd prime. Suppose p - m. Since Q(~x) is a primitive quadratic
form, p divides exactly none, one, or two of a, b, c. If p divides exactly one of a, b, c, rename
a, b, c to a′, b′, c′ so that p - a′b′ and p | c′. If p divides exactly two of a, b, c, rename a, b, c to
a′, b′, c′ so that p - a′, p | b′, and p | c′. Then

rpk,Q(m) =



p2k
(

1 +
1

p

(
−abcm
p

))
, if p - abc,

p2k
(

1− 1

p

(
−a′b′

p

))
, if p - a′b′ and p | c′,

p2k
(

1 +

(
a′m

p

))
, if p - a′, p | b′, and p | c′.

Proof.
Because p - m, any solution (x0, y0, z0)

T to Q(~x) ≡ m (mod p) has the property that
p - ax0, p - by0, or p - cz0. Therefore, Corollary 3.2 can be used once rp,Q(m) is known.

Case 1 (p - abc):
Using (3.4), we get

rp,Q(m) =
1

p

p−1∑
t=0

e

(
−mt
p

)
G

(
at

p

)
G

(
bt

p

)
G

(
ct

p

)(3.20)

= p2 +
1

p

p−1∑
t=1

e

(
−mt
p

)
G

(
at

p

)
G

(
bt

p

)
G

(
ct

p

)
(3.21)

= p2 +
1

p

p−1∑
t=1

e

(
−mt
p

)
p1/2

(
at

p

)
εpp

1/2

(
bt

p

)
εpp

1/2

(
ct

p

)
εp(3.22)

= p2 + p1/2(εp)
3

(
abc

p

) p−1∑
t=1

e

(
−mt
p

)(
t

p

)
(3.23)

= p2 + p1/2(εp)
3

(
abc

p

) p−1∑
t=0

e

(
−mt
p

)(
t

p

) (
since

(
0

p

)
= 0

)
(3.24)

= p2 + p1/2(εp)
3

(
abc

p

)
G

(
−m
p

)
(by Lemma 2.2)(3.25)

= p2 + p1/2(εp)
3

(
abc

p

)
p1/2

(
−m
p

)
εp(3.26)

= p2 + p

(
−abcm
p

)
= p2

(
1 +

1

p

(
−abcm
p

))
(since (εp)

4 = 1).(3.27)

The formula rpk,Q = p2k
(

1 +
1

p

(
−abcm
p

))
follows from Corollary 3.2.
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Case 2 (p - a′b′ and p | c′):
Using (3.4), we get

rp,Q(m) =
1

p

p−1∑
t=0

e

(
−mt
p

)
G

(
a′t

p

)
G

(
b′t

p

)
G

(
c′t

p

)

= p2 +
1

p

p−1∑
t=1

e

(
−mt
p

)
G

(
a′t

p

)
G

(
b′t

p

)
· p

= p2 +

p−1∑
t=1

e

(
−mt
p

)
p1/2

(
a′t

p

)
εpp

1/2

(
b′t

p

)
εp

= p2 + p · (εp)2
(
a′b′

p

) p−1∑
t=1

e

(
−mt
p

)

= p2 + p

(
−a′b′

p

)(p−1∑
t=0

e

(
−mt
p

)
− 1

) (
since (εp)

2 =

(
−1

p

))
= p2 − p

(
−a′b′

p

)
= p2

(
1− 1

p

(
−a′b′

p

))
(by Lemma 2.1).

The formula rpk,Q = p2k
(

1− 1

p

(
−a′b′

p

))
follows from Corollary 3.2.

Case 3 (p - a′, p | b′, and p | c′):
Using (3.4), we get

rp,Q(m) =
1

p

p−1∑
t=0

e

(
−mt
p

)
G

(
a′t

p

)
G

(
b′t

p

)
G

(
c′t

p

)

= p2 +
1

p

p−1∑
t=1

e

(
−mt
p

)
p1/2

(
a′t

p

)
εp · p2

= p2 + p3/2εp

(
a′

p

) p−1∑
t=1

e

(
−mt
p

)(
t

p

)

= p2 + p3/2εp

(
a′

p

) p−1∑
t=0

e

(
−mt
p

)(
t

p

) (
since

(
0

p

)
= 0

)
= p2 + p3/2εp

(
a′

p

)
G

(
−m
p

)
= p2 + p3/2εp

(
a′

p

)
p1/2

(
−m
p

)
εp

= p2 + p2(εp)
2

(
−a′m
p

)
= p2 + p2

(
a′m

p

)
= p2

(
1 +

(
a′m

p

)) (
since (εp)

2 =

(
−1

p

))
.
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The formula rpk,Q = p2k
(

1 +

(
a′m

p

))
follows from Corollary 3.2. �

Lemma 3.4. Let p is an odd prime. Then

p−1∑
t=0

(
t

p

)
=

p−1∑
t=1

(
t

p

)
= 0.

Proof. Since

(
0

p

)
= 0,

p−1∑
t=0

(
t

p

)
=

p−1∑
t=1

(
t

p

)
.

From Lemma 2.2 , we know that

G

(
0

p

)
=

p−1∑
t=0

(
1 +

(
t

p

))
e

(
0t

p

)
=

p−1∑
t=0

(
1 +

(
t

p

))
= p+

p−1∑
t=0

(
t

p

)
.(3.28)

On the other hand, from (2.2) we know that

G

(
0

p

)
= p.(3.29)

By setting (3.28) equal to (3.29), we get

p+

p−1∑
t=0

(
t

p

)
= p =⇒

p−1∑
t=0

(
t

p

)
= 0.

�

Theorem 3.5. Let p be an odd prime. Suppose that p ‖ m and p - abc. Then

rpk,Q(m) =

p
2 if k = 1,

p2k
(

1− 1

p2

)
, if k ≥ 2.

Proof. Let m = m′p for some m′ ∈ Z so that gcd(m′, p) = 1.
For the case in which k = 1, the proof is somewhat the same as in the proof of Case 1 of

Theorem 3.3. Equation (3.24) still holds when p | m. Therefore,

rp,Q(m) = p2 + p1/2(εp)
3

(
abc

p

) p−1∑
t=0

e

(
−mt
p

)(
t

p

)

= p2 + p1/2(εp)
3

(
abc

p

) p−1∑
t=0

e(−m′t)
(
t

p

)

= p2 + p1/2(εp)
3

(
abc

p

) p−1∑
t=0

(
t

p

)
= p2 (by Lemma 3.4).

Let (x0, y0, z0)
T be a solution to Q(~x) ≡ m (mod p2). Toward contradiction, assume that

p | ax0, p | by0, and p | cz0. Since p - abc, x0 = x1p, y0 = y1p, and z0 = z1p for some
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x1, y1, z1 ∈ Z. Thus,

ax20 + by20 + cz20 = a(x1p)
2 + b(y1p)

2 + c(z1p)
2

= ax21p
2 + by21p

2 + cz21p
2

≡ 0 (mod p2).

However, this contradicts the fact that m 6≡ 0 (mod p2) since p ‖ m. Therefore, for any
solution (x0, y0, z0)

T to Q(~x) ≡ m (mod p2), p - ax0, p - by0, or p - cz0. Thus, Corollary 3.2
can be used once rp2,Q(m) is known. In this case,

rp2,Q(m) =
1

p2

p2−1∑
t=0

e

(
−mt
p2

)
G

(
at

p2

)
G

(
bt

p2

)
G

(
ct

p2

)

= p4 +
1

p2

p2−1∑
t=1

e

(
−mt
p2

)
G

(
at

p2

)
G

(
bt

p2

)
G

(
ct

p2

)

= p4 +
1

p2

p2−1∑
t=1

e

(
−m′t
p

)
G

(
at

p2

)
G

(
bt

p2

)
G

(
ct

p2

)
.

Let t = t0p
τ , where τ ∈ {0, 1} and t0 ∈ (Z/p2−τZ)∗.

rp2,Q(m) = p4 +
1

p2

1∑
τ=0

∑
t0∈(Z/p2−τZ)∗

e

(
−m′t0pτ

p

)
G

(
at0p

τ

p2

)
G

(
bt0p

τ

p2

)
G

(
ct0p

τ

p2

)

= p4 +
1

p2

∑
t0∈(Z/p2Z)∗

e

(
−m′t0
p

)
G

(
at0
p2

)
G

(
bt0
p2

)
G

(
ct0
p2

)

+
1

p2

p−1∑
t0=1

e

(
−m′t0p

p

)
G

(
at0p

p2

)
G

(
bt0p

p2

)
G

(
ct0p

p2

)
= p4 +

1

p2

∑
t0∈(Z/p2Z)∗

e

(
−m′t0
p

)
p

(
at0
p2

)
εp2p

(
bt0
p2

)
εp2p

(
ct0
p2

)
εp2

+
1

p2

p−1∑
t0=1

e(−m′t0) p3/2
(
at0
p

)
εpp

3/2

(
bt0
p

)
εpp

3/2

(
ct0
p

)
εp

= p4 + p
∑

t0∈(Z/p2Z)∗
e

(
−m′t0
p

)
+ p5/2

(
abc

p

)
(εp)

3

p−1∑
t0=1

(
t0
p

)

= p4 + p
∑

t0∈(Z/p2Z)∗
e

(
−m′t0
p

)
(by Lemma 3.4).
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Now t0 can be rewritten as t0 = t1 + t2p, where 1 ≤ t1 ≤ p− 1 and 0 ≤ t2 ≤ p− 1. Thus,

rp2,Q(m) = p4 + p

p−1∑
t1=1

p−1∑
t2=0

e

(
−m′(t1 + t2p)

p

)

= p4 + p

p−1∑
t1=1

e

(
−m′t1
p

) p−1∑
t2=0

e(−m′t2)

= p4 + p2

(
p−1∑
t1=0

e

(
−m′t1
p

)
− 1

)
= p4 − p2 (by Lemma 2.1)

= p4
(

1− 1

p2

)
.

The equation rpk,Q(m) = p2k
(

1− 1

p2

)
for k ≥ 2 follows from Corollary 3.2. �

Theorem 3.6. Let m be an integer. Suppose ~x0 = (x0, y0, z0)
T ∈ Z3 is a solution to

Q(~x) ≡ m (mod 2k) for some k ≥ 3. If 2 - ax0, 2 - by0, or 2 - cz0, then there are exactly
32 solutions to Q(~x) ≡ m (mod 2k+1) of the form (x0 + 2k−1x1, y0 + 2k−1y1, z0 + 2k−1z1)

T ,
where x1, y1, z1 ∈ Z/4Z.

Proof. Without loss of generality, assume that 2 - ax0.
We prove that there exists a solution to Q(~x) ≡ m (mod 2k+1) of the form (x0+2k−1x1, y0+

2k−1y1, z0 +2k−1z1)
T . Because Q(~x0) ≡ m (mod 2k), there exists ` ∈ Z such that ax20 + by20 +

cz20 = m+ 2k`. For some x1, y1, z1 ∈ Z/4Z, observe that

a(x0 + 2k−1x1)
2 + b(y0 + 2k−1y1)

2 + c(z0 + 2k−1z1)
2 −m(3.30)

= 2k(`+ ax0x1 + by0y1 + cz0z1) + 22k−2(ax21 + by21 + cz21)(3.31)

≡ 2k(`+ ax0x1 + by0y1 + cz0z1) (mod 2k+1),(3.32)

since k ≥ 3.
Let

x1 = (ax0)
−1(−`− by0y1 − cz0z1),(3.33)

where ax0(ax0)
−1 ≡ 1 (mod p) ⇐⇒ ax0(ax0)

−1 = 1+2t for some t ∈ Z. (Note that (ax0)
−1

exists since 2 - ax0.) Then

a(x0 + 2k−1x1)
2 + b(y0 + 2k−1y1)

2 + c(z0 + 2k−1z1)
2 −m(3.34)

≡ 2k(`+ ax0x1 + by0y1 + cz0z1) (mod 2k+1)(3.35)

≡ 2k(`+ ax0(ax0)
−1(−`− by0y1 − cz0z1) + by0y1 + cz0z1) (mod 2k+1)(3.36)

≡ 2k(`+ (1 + 2t)(−`− by0y1 − cz0z1) + by0y1 + cz0z1) (mod 2k+1)(3.37)

≡ 2k+1t(−`− by0y1 − cz0z1) (mod 2k+1)(3.38)

≡ 0 (mod 2k+1)(3.39)

⇐⇒ a(x0 + 2k−1x1)
2 + b(y0 + 2k−1y1)

2 + c(z0 + 2k−1z1)
2 ≡ m (mod 2k+1).(3.40)
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Thus, there exists a solution toQ(~x) ≡ m (mod 2k+1) of the form (x0+2k−1x1, y0+2k−1y1, z0+
2k−1z1)

T .
Conversely, if a(x0 + 2k−1x1)

2 + b(y0 + 2k−1y1)
2 + c(z0 + 2k−1z1)

2 ≡ m (mod 2k+1), then by
using (3.32), we see that

2k(`+ ax0x1 + by0y1 + cz0z1) ≡ 0 (mod 2k+1)(3.41)

⇐⇒ `+ ax0x1 + by0y1 + cz0z1 ≡ 0 (mod 2)(3.42)

⇐⇒ ax0x1 ≡ −`− by0y1 − cz0z1 (mod 2)(3.43)

⇐⇒ x1 ≡ (ax0)
−1(−`− by0y1 − cz0z1) (mod 2)(3.44)

From (3.44), we see that x1 ∈ Z/pZ is uniquely determined (mod 2) by the choices of y1
and z1. However, x1 ∈ Z/4Z, so there are exactly 2 choices for x1 once y1 and z1 have been
chosen. Because there are no restrictions on y1, z1 ∈ Z/4Z, there are 4 choices for y1 and
4 choices for z1. Therefore, there are exactly 32 solutions to Q(~x) ≡ m (mod 2k+1) of the
form (x0 + 2k−1x1, y0 + 2k−1y1, z0 + 2k−1z1)

T , where x1, y1, z1 ∈ Z/4Z. �

Corollary 3.7. Let k ≥ 3. Suppose that {(x1, y1, z1)T , . . . , (xn, yn, zn)T} is the set of the
n = r2k,Q(m) solutions in (Z/2kZ)3 to Q(~x) ≡ m (mod 2k), and suppose that 2 - axj, 2 - byj,
or 2 - czj for each j ∈ Z, 1 ≤ j ≤ r2k,Q(m). Then there are exactly r2k,Q(m) · 22` solutions
in (Z/2k+`Z)3 to Q(~x) ≡ m (mod 2k+`) for ` ≥ 0. Furthermore, each of the solutions
(x0, y0, z0)

T in (Z/2k+`Z)3 to Q(~x) ≡ m (mod 2k+`) satisfies the property that p - ax0,
p - by0, or p - cz0.

Proof. The corollary is clearly true when ` = 0.
Let n = r2k,Q(m). Assume that there are exactly 22`n solutions in (Z/2k+`Z)3 to Q(~x) ≡

m (mod 2k+`) for some ` ≥ 0. Let {(x1, y1, z1)T , . . . , (x22`n, y22`n, z22`n)T} be the set of the
22`n solutions in (Z/2k+`Z)3 to Q(~x) ≡ m (mod 2k+`). Assume that p - axj, p - byj, or p - czj
for each j ∈ Z, 1 ≤ j ≤ 22`n.

According to Theorem 3.6, for each solution (xj, yj, zj)
T in Z/2k+`Z toQ(~x) ≡ m (mod 2k+`),

there exist 32 solutions toQ(~x) ≡ m (mod 2k+`+1) of the form (xj+2k+`−1x′j, yj+2k+`−1y′j, zj+

2k+`−1z′j)
T , where x′j, y

′
j, z
′
j ∈ Z/4Z. Since 2 - axj, 2 - byj, or 2 - czj, clearly

2 - a(xj + 2k+`−1x′j) = axj + 2k+`ax′j,

2 - b(yj + 2k+`−1y′j) = byj + 2k+`by′j, or

2 - c(zj + 2k+`−1z′j) = czj + 2k+`cz′j.

Let 1 ≤ j1, j2 ≤ 22`n. Suppose that

xj1 + 2k+`−1x′j1 ≡ xj2 + 2k+`−1x′j2 (mod 2k+`+1),

yj1 + 2k+`−1y′j1 ≡ yj2 + 2k+`−1y′j2 (mod 2k+`+1), and

zj1 + 2k+`−1z′j1 ≡ zj2 + 2k+`−1z′j2 (mod 2k+`+1).
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Then

xj1 + 2k+`−1x′j1 ≡ xj2 + 2k+`−1x′j2 (mod 2k+`+1)

⇐⇒ (xj1 − xj2) + 2k+`−1(x′j1 − x
′
j2

) ≡ 0 (mod 2k+`+1)

⇐⇒ (xj1 − xj2) + 2k+`−1(x′j1 − x
′
j2

) = 2k+`+1t for some t ∈ Z
=⇒ 2k+`−1 | (xj1 − xj2) ⇐⇒ xj1 ≡ xj2 (mod 2k+`−1).

As shown a similar manner, yj1 ≡ yj2 (mod 2k+`−1) and zj1 ≡ zj2 (mod 2k+`−1).
Conversely, suppose that

xj1 ≡ xj2 (mod 2k+`−1),

yj1 ≡ yj2 (mod 2k+`−1), and

zj1 ≡ zj2 (mod 2k+`−1).

Then there exists tx, ty, tz ∈ Z so that

xj1 = xj2 + 2k+`−1tx,

yj1 = yj2 + 2k+`−1ty, and

zj1 = zj2 + 2k+`−1tz.

Let Sk+`+1,j be the set of the 32 solutions to Q(~x) ≡ m (mod pk+`+1) of the form (xj +
2k+`−1x′j, yj+2k+`−1y′j, zj+2k+`−1z′j)

T , 1 ≤ j ≤ 22`n. Let (xj1 +2k+`−1x′j1 , yj1 +2k+`−1y′j1 , zj1 +

2k+`−1z′j1)
T ∈ Sk+`+1,j1 . Observe that

xj1 + 2k+`−1x′j1 = xj2 + 2k+`−1tx + 2k+`−1x′j1 = xj2 + 2k+`−1(tx + x′j1),

yj1 + 2k+`−1y′j1 = yj2 + 2k+`−1ty + 2k+`−1y′j1 = yj2 + 2k+`−1(ty + y′j1), and

zj1 + 2k+`−1z′j1 = zj2 + 2k+`−1tz + 2k+`−1z′j1 = zj2 + 2k+`−1(tz + z′j1).

Therefore, (xj1 + 2k+`−1x′j1 , yj1 + 2k+`−1y′j1 , zj1 + 2k+`−1z′j1)
T ∈ Sk+`+1,j2 , and Sk+`+1,j1 ⊆

Sk+`+1,j2 . It can be shown in a similar manner that Sk+`+1,j2 ⊆ Sk+`+1,j1 , so Sk+`+1,j1 =
Sk+`+1,j2 .

In short, if 1 ≤ j1, j2 ≤ 22`n, then

Sk+`+1,j1 ∩ Sk+`+1,j2 ={
Sk+`+1,j1 = Sk+`+1,j2 , if xj1 − xj2 ≡ yj1 − yj2 ≡ zj1 − zj2 ≡ 0 (mod 2k+`−1),

∅, otherwise.

Given a solution in (xj1 , yj1 , zj1)
T in (Z/2k+`Z)3, there are only 2 choices for in xj2 ∈

Z/2k+`Z where xj2 ≡ xj1 (mod 2k+`−1), only 2 choices for in yj2 ∈ Z/2k+`Z where yj2 ≡
yj1 (mod 2k+`−1), and only 2 choices for in zj2 ∈ Z/2k+`Z where zj2 ≡ zj1 (mod 2k+`−1). Thus,
there are 8 solutions in (Z/2k+`Z)3 of the form (xj, yj, zj)

T such that Sk+`+1,j = Sk+`+1,j1 .
This means that every solution to Q(~x) ≡ m (mod 2k+1) of the form (xj + 2k−1x′j, yj +

2k−1y′j, zj + 2k−1z′j)
T is counted 8 times. Therefore, there are 22`n · 32

8
= 22`n · 22 = 22(`+1)n

solutions to Q(~x) ≡ m (mod 2k+`+1). By the principle of mathematical induction, the
corollary follows. �
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