Representation by Ternary Quadratic Forms

Edna Jones

Rose-Hulman Institute of Technology
Texas A\&M Math REU

$$
\text { July 23, } 2014
$$

The Quadratic Forms of Interest

$Q(\overrightarrow{\mathbf{x}})=a x^{2}+b y^{2}+c z^{2}$, where

- a, b, c are positive integers
- $\operatorname{gcd}(a, b, c)=1$
- $\overrightarrow{\mathrm{x}}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$

The Quadratic Forms of Interest

$Q(\overrightarrow{\mathbf{x}})=a x^{2}+b y^{2}+c z^{2}$, where

- a, b, c are positive integers
- $\operatorname{gcd}(a, b, c)=1$
- $\overrightarrow{\mathbf{x}}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$

Examples:

- $Q(\overrightarrow{\mathbf{x}})=x^{2}+3 y^{2}+5 z^{2}$
- $Q(\overrightarrow{\mathrm{x}})=3 x^{2}+4 y^{2}+5 z^{2}$
- $Q(\overrightarrow{\mathbf{x}})=x^{2}+5 y^{2}+7 z^{2}$

Globally Represented

Definition

An integer m is (globally) represented by Q if there exists $\overrightarrow{\mathbf{x}} \in \mathbb{Z}^{3}$ such that $Q(\overrightarrow{\mathbf{x}})=m$.

Globally Represented

Definition

An integer m is (globally) represented by Q if there exists $\overrightarrow{\mathbf{x}} \in \mathbb{Z}^{3}$ such that $Q(\overrightarrow{\mathbf{x}})=m$.

Example

1 and 9 are globally represented by $Q(\overrightarrow{\mathrm{x}})=x^{2}+5 y^{2}+7 z^{2}$, because

$$
\begin{aligned}
& \text { - } 1=1^{2}+5 \cdot 0^{2}+7 \cdot 0^{2} \\
& \text { - } 9=2^{2}+5 \cdot 1^{2}+7 \cdot 0^{2}
\end{aligned}
$$

Locally Represented

Definition

Let p be a positive prime integer. An integer m is locally represented by Q at the prime p if for every nonnegative integer k there exists $\overrightarrow{\mathbf{x}} \in \mathbb{Z}^{3}$ such that

$$
Q(\overrightarrow{\mathbf{x}}) \equiv m\left(\bmod p^{k}\right)
$$

Locally Represented

Definition

Let p be a positive prime integer. An integer m is locally represented by Q at the prime p if for every nonnegative integer k there exists $\overrightarrow{\mathbf{x}} \in \mathbb{Z}^{3}$ such that

$$
Q(\overrightarrow{\mathbf{x}}) \equiv m\left(\bmod p^{k}\right) .
$$

Definition

An integer m is locally represented (everywhere) by Q if m is locally represented at p for every prime p and there exists $\overrightarrow{\mathbf{x}} \in \mathbb{R}^{3}$ such that $Q(\overrightarrow{\mathbf{x}})=m$.

Locally Represented Example

Example

1 and 3 are locally represented everywhere by $Q(\overrightarrow{\mathrm{x}})=x^{2}+5 y^{2}+7 z^{2}$.

Locally Represented Example

Example

1 and 3 are locally represented everywhere by
$Q(\overrightarrow{\mathbf{x}})=x^{2}+5 y^{2}+7 z^{2}$.

- $1^{2}+5 \cdot 0^{2}+7 \cdot 0^{2} \equiv 1\left(\bmod p^{k}\right)$ for any prime p and integer $k \geq 0$

Locally Represented Example

Example

1 and 3 are locally represented everywhere by
$Q(\overrightarrow{\mathbf{x}})=x^{2}+5 y^{2}+7 z^{2}$.

- $1^{2}+5 \cdot 0^{2}+7 \cdot 0^{2} \equiv 1\left(\bmod p^{k}\right)$ for any prime p and integer $k \geq 0$
- More difficult to see why 3 locally represented everywhere by Q, because 3 is not globally represented by Q

Difference between Globally and Locally Represented

- m is globally represented by Q
$\Longrightarrow m$ is locally represented everywhere by Q

Difference between Globally and Locally Represented

- m is globally represented by Q
$\Longrightarrow m$ is locally represented everywhere by Q
- m is locally represented everywhere by Q
$\nRightarrow m$ is globally represented by Q

Difference between Globally and Locally Represented

- m is globally represented by Q
$\Longrightarrow m$ is locally represented everywhere by Q
- m is locally represented everywhere by Q
$\nRightarrow m$ is globally represented by Q
- However, for m square-free and sufficiently large, m is locally represented everywhere by Q
$\Longrightarrow m$ is globally represented by Q

Difference between Globally and Locally Represented

- m is globally represented by Q
$\Longrightarrow m$ is locally represented everywhere by Q
- m is locally represented everywhere by Q
$\nRightarrow m$ is globally represented by Q
- However, for m square-free and sufficiently large, m is locally represented everywhere by Q
$\Longrightarrow m$ is globally represented by Q
- How large is sufficiently large?

Questions that Arose

- How do you determine that m is locally represented everywhere by Q ?

Questions that Arose

- How do you determine that m is locally represented everywhere by Q ?
- How do you determine that m is locally represented by Q at a prime p ?

Counting Solutions $\left(\bmod p^{k}\right)$

Let p be a positive prime integer and k a non-negative integer.

Definition

$r_{p^{k}, Q}(m)=\#\left\{\overrightarrow{\mathbf{x}} \in\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{3}: Q(\overrightarrow{\mathbf{x}}) \equiv m\left(\bmod p^{k}\right)\right\}$

Counting Solutions $\left(\bmod p^{k}\right)$

Let p be a positive prime integer and k a non-negative integer.

Definition

$r_{p^{k}, Q}(m)=\#\left\{\overrightarrow{\mathbf{x}} \in\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{3}: Q(\overrightarrow{\mathbf{x}}) \equiv m\left(\bmod p^{k}\right)\right\}$
m is locally represented by Q at a prime p if and only if $r_{p^{k}, Q}(m)>0$ for every nonnegative integer k.

An Abbreviation and a Definition

Abbreviate $e^{2 \pi i w}$ as $\mathrm{e}(w)$.

An Abbreviation and a Definition

Abbreviate $e^{2 \pi i v}$ as $\mathrm{e}(w)$.

Definition

The quadratic Gauss sum $G\left(\frac{n}{q}\right)$ over $\mathbb{Z} / q \mathbb{Z}$ is defined by

$$
G\left(\frac{n}{q}\right)=\sum_{j=0}^{q-1} \mathrm{e}\left(\frac{n j^{2}}{q}\right) .
$$

An Abbreviation and a Definition

Abbreviate $e^{2 \pi i v}$ as $\mathrm{e}(w)$.

Definition

The quadratic Gauss sum $G\left(\frac{n}{q}\right)$ over $\mathbb{Z} / q \mathbb{Z}$ is defined by

$$
G\left(\frac{n}{q}\right)=\sum_{j=0}^{q-1} \mathrm{e}\left(\frac{n j^{2}}{q}\right) .
$$

I have explicit formulas for quadratic Gauss sums.

A Sum Containing e(w)

$$
\sum_{t=0}^{q} \mathrm{e}\left(\frac{n t}{q}\right)= \begin{cases}q, & \text { if } n \equiv 0(\bmod q) \\ 0, & \text { otherwise }\end{cases}
$$

A Sum Containing e(w)

$$
\begin{gathered}
\sum_{t=0}^{q} \mathrm{e}\left(\frac{n t}{q}\right)= \begin{cases}q, & \text { if } n \equiv 0(\bmod q), \\
0, & \text { otherwise. }\end{cases} \\
\sum_{t=0}^{p^{k}-1} \mathrm{e}\left(\frac{(Q(\overrightarrow{\mathbf{x}})-m) t}{p^{k}}\right)= \begin{cases}p^{k}, & \text { if } Q(\overrightarrow{\mathbf{x}}) \equiv m\left(\bmod p^{k}\right), \\
0, & \text { otherwise. }\end{cases}
\end{gathered}
$$

Counting Solutions $\left(\bmod p^{k}\right)$

$$
\frac{1}{p^{k}} \sum_{t=0}^{p^{k}-1} \mathrm{e}\left(\frac{(Q(\overrightarrow{\mathbf{x}})-m) t}{p^{k}}\right)= \begin{cases}1, & \text { if } Q(\overrightarrow{\mathbf{x}}) \equiv m\left(\bmod p^{k}\right) \\ 0, & \text { otherwise }\end{cases}
$$

Counting Solutions $\left(\bmod p^{k}\right)$

$$
\frac{1}{p^{k}} \sum_{t=0}^{p^{k}-1} \mathrm{e}\left(\frac{(Q(\overrightarrow{\mathbf{x}})-m) t}{p^{k}}\right)= \begin{cases}1, & \text { if } Q(\overrightarrow{\mathbf{x}}) \equiv m\left(\bmod p^{k}\right) \\ 0, & \text { otherwise }\end{cases}
$$

$$
r_{p^{k}, Q}(m)=\#\left\{\overrightarrow{\mathbf{x}} \in\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{3}: Q(\overrightarrow{\mathbf{x}}) \equiv m\left(\bmod p^{k}\right)\right\}
$$

Counting Solutions $\left(\bmod p^{k}\right)$

$$
\frac{1}{p^{k}} \sum_{t=0}^{p^{k}-1} \mathrm{e}\left(\frac{(Q(\overrightarrow{\mathbf{x}})-m) t}{p^{k}}\right)= \begin{cases}1, & \text { if } Q(\overrightarrow{\mathbf{x}}) \equiv m\left(\bmod p^{k}\right) \\ 0, & \text { otherwise }\end{cases}
$$

$$
r_{p^{k}, Q}(m)=\#\left\{\overrightarrow{\mathbf{x}} \in\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{3}: Q(\overrightarrow{\mathbf{x}}) \equiv m\left(\bmod p^{k}\right)\right\}
$$

$$
r_{p^{k}, Q}(m)=\sum_{\vec{x} \in\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{3}} \frac{1}{p^{k}} \sum_{t=0}^{p^{k}-1} \mathrm{e}\left(\frac{(Q(\overrightarrow{\mathbf{x}})-m) t}{p^{k}}\right)
$$

Counting Solutions $\left(\bmod p^{k}\right)$

$$
\begin{aligned}
r_{p^{k}, Q}(m) & =\sum_{\vec{x} \in\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{3}} \frac{1}{p^{k}} \sum_{t=0}^{p^{k}-1} \mathrm{e}\left(\frac{(Q(\overrightarrow{\mathbf{x}})-m) t}{p^{k}}\right) \\
& =\sum_{x=0}^{p^{k}-1} \sum_{y=0}^{p^{k}-1} \sum_{z=0}^{p^{k}-1} \frac{1}{p^{k}} \sum_{t=0}^{p^{k}-1} \mathrm{e}\left(\frac{\left(a x^{2}+b y^{2}+c z^{2}-m\right) t}{p^{k}}\right) \\
& =\frac{1}{p^{k}} \sum_{t=0}^{p^{k}-1} \mathrm{e}\left(\frac{-m t}{p^{k}}\right) G\left(\frac{a t}{p^{k}}\right) G\left(\frac{b t}{p^{k}}\right) G\left(\frac{c t}{p^{k}}\right)
\end{aligned}
$$

A Formula for $r_{p^{k}, Q}(m)$

Let $Q(\overrightarrow{\mathbf{x}})=a x^{2}+b y^{2}+c z^{2}$.
Let p be an odd prime such that $p \nmid a b c$.
Let m be square-free.

A Formula for $r_{p^{k}, Q}(m)$

Let $Q(\overrightarrow{\mathbf{x}})=a x^{2}+b y^{2}+c z^{2}$.
Let p be an odd prime such that $p \nmid a b c$.
Let m be square-free.
$r_{p^{k}, Q}(m)= \begin{cases}1, & \text { if } k=0, \\ p^{2 k}\left(1+\frac{1}{p}\left(\frac{-a b c m}{p}\right)\right), & \text { if } p \nmid m \text { or } k=1, \\ p^{2 k}\left(1-\frac{1}{p^{2}}\right), & \text { if } p \mid m \text { and } k>1,\end{cases}$
where $\left(\frac{\cdot}{p}\right)$ is the Legendre symbol.

A Formula for $r_{p^{k}, Q}(m)$

Let $Q(\overrightarrow{\mathbf{x}})=a x^{2}+b y^{2}+c z^{2}$.
Let p be an odd prime such that $p \nmid a b c$.
Let m be square-free.
$r_{p^{k}, Q}(m)= \begin{cases}1, & \text { if } k=0, \\ p^{2 k}\left(1+\frac{1}{p}\left(\frac{-a b c m}{p}\right)\right), & \text { if } p \nmid m \text { or } k=1, \\ p^{2 k}\left(1-\frac{1}{p^{2}}\right), & \text { if } p \mid m \text { and } k>1,\end{cases}$
where $\left(\frac{\cdot}{p}\right)$ is the Legendre symbol.
Under the above conditions, $r_{p^{k}, Q}(m)>0$ for every $k \geq 0$.

Back to an Example

m square-free, p odd, and $p \nmid a b c$
$\Longrightarrow m$ is locally represented by Q at the prime p

Back to an Example

m square-free, p odd, and $p \nmid a b c$
$\Longrightarrow m$ is locally represented by Q at the prime p
Example

- $Q(\overrightarrow{\mathbf{x}})=x^{2}+5 y^{2}+7 z^{2}$ and $m=3$

Back to an Example

m square-free, p odd, and $p \nmid a b c$
$\Longrightarrow m$ is locally represented by Q at the prime p
Example

- $Q(\overrightarrow{\mathbf{x}})=x^{2}+5 y^{2}+7 z^{2}$ and $m=3$
- 3 is square-free

Back to an Example

m square-free, p odd, and $p \nmid a b c$
$\Longrightarrow m$ is locally represented by Q at the prime p

Example

- $Q(\overrightarrow{\mathbf{x}})=x^{2}+5 y^{2}+7 z^{2}$ and $m=3$
- 3 is square-free
- 5 and 7 are the only odd primes that divide $1 \cdot 5 \cdot 7$

Back to an Example

m square-free, p odd, and $p \nmid a b c$
$\Longrightarrow m$ is locally represented by Q at the prime p

Example

- $Q(\overrightarrow{\mathbf{x}})=x^{2}+5 y^{2}+7 z^{2}$ and $m=3$
- 3 is square-free
- 5 and 7 are the only odd primes that divide $1 \cdot 5 \cdot 7$
- Now only need to check if 3 is locally represented at the primes 2, 5, and 7

Another Formula for $r_{p^{k}, Q}(m)$

Let $Q(\overrightarrow{\mathbf{x}})=a x^{2}+b y^{2}+c z^{2}$.
Let p be an odd prime such that p divides exactly one of a, b, c.

Another Formula for $r_{p^{k}, Q}(m)$

Let $Q(\overrightarrow{\mathbf{x}})=a x^{2}+b y^{2}+c z^{2}$.
Let p be an odd prime such that p divides exactly one of a, b, c.
Without loss of generality, say $p \mid c$ but $p \nmid a b$.

Another Formula for $r_{p^{k}, Q}(m)$

Let $Q(\overrightarrow{\mathbf{x}})=a x^{2}+b y^{2}+c z^{2}$.
Let p be an odd prime such that p divides exactly one of a, b, c.
Without loss of generality, say $p \mid c$ but $p \nmid a b$.
If $p \nmid m$,

$$
r_{p^{k}, Q}(m)= \begin{cases}1, & k=0 \\ p^{2 k}\left(1-\frac{1}{p}\left(\frac{-a b}{p}\right)\right), & k \geq 1\end{cases}
$$

where $\left(\frac{\cdot}{p}\right)$ is the Legendre symbol.

Another Formula for $r_{p^{k}, Q}(m)$

Let $Q(\overrightarrow{\mathbf{x}})=a x^{2}+b y^{2}+c z^{2}$.
Let p be an odd prime such that p divides exactly one of a, b, c.
Without loss of generality, say $p \mid c$ but $p \nmid a b$.
If $p \nmid m$,

$$
r_{p^{k}, Q}(m)= \begin{cases}1, & k=0 \\ p^{2 k}\left(1-\frac{1}{p}\left(\frac{-a b}{p}\right)\right), & k \geq 1\end{cases}
$$

where $\left(\frac{\cdot}{p}\right)$ is the Legendre symbol.
Under the above conditions, $r_{p^{k}, Q}(m)>0$ for every $k \geq 0$.

Back to an Example

p odd, $p \nmid m$, and p divides exactly one of a, b, c $\Longrightarrow m$ is locally represented by Q at the prime p

Back to an Example

p odd, $p \nmid m$, and p divides exactly one of a, b, c $\Longrightarrow m$ is locally represented by Q at the prime p

Example

- $Q(\overrightarrow{\mathbf{x}})=x^{2}+5 y^{2}+7 z^{2}$ and $m=3$

Back to an Example

p odd, $p \nmid m$, and p divides exactly one of a, b, c $\Longrightarrow m$ is locally represented by Q at the prime p

Example

- $Q(\overrightarrow{\mathbf{x}})=x^{2}+5 y^{2}+7 z^{2}$ and $m=3$
- 5 divides exactly one of the coefficients of Q

Back to an Example

p odd, $p \nmid m$, and p divides exactly one of a, b, c $\Longrightarrow m$ is locally represented by Q at the prime p

Example

- $Q(\overrightarrow{\mathbf{x}})=x^{2}+5 y^{2}+7 z^{2}$ and $m=3$
- 5 divides exactly one of the coefficients of Q
- $5 \nmid 3$

Back to an Example

p odd, $p \nmid m$, and p divides exactly one of a, b, c $\Longrightarrow m$ is locally represented by Q at the prime p

Example

- $Q(\overrightarrow{\mathbf{x}})=x^{2}+5 y^{2}+7 z^{2}$ and $m=3$
- 5 divides exactly one of the coefficients of Q
- $5 \nmid 3$
- 3 is locally represented at the prime 5

Back to an Example

p odd, $p \nmid m$, and p divides exactly one of a, b, c $\Longrightarrow m$ is locally represented by Q at the prime p

Example

- $Q(\overrightarrow{\mathbf{x}})=x^{2}+5 y^{2}+7 z^{2}$ and $m=3$
- 5 divides exactly one of the coefficients of Q
- $5 \nmid 3$
- 3 is locally represented at the prime 5
- Similar case holds for the prime 7

Back to an Example

p odd, $p \nmid m$, and p divides exactly one of a, b, c $\Longrightarrow m$ is locally represented by Q at the prime p

Example

- $Q(\overrightarrow{\mathbf{x}})=x^{2}+5 y^{2}+7 z^{2}$ and $m=3$
- 5 divides exactly one of the coefficients of Q
- $5 \nmid 3$
- 3 is locally represented at the prime 5
- Similar case holds for the prime 7
- Now only need to check if 3 is locally represented at the prime 2

Locally Represented at the Prime 2

Theorem

If $2 \nmid a b c m$ and there exists a solution to

$$
Q(\overrightarrow{\mathbf{x}})=a x^{2}+b y^{2}+c z^{2} \equiv m(\bmod 8)
$$

then m is locally represented by Q at the prime 2 .

Back to an Example

$2 \nmid a b c m$ and solution to $Q(\overrightarrow{\mathbf{x}}) \equiv m(\bmod 8)$ exists $\Longrightarrow m$ is locally represented by Q at the prime 2

Example

- $Q(\overrightarrow{\mathbf{x}})=x^{2}+5 y^{2}+7 z^{2}$ and $m=3$

Back to an Example

$2 \nmid a b c m$ and solution to $Q(\overrightarrow{\mathbf{x}}) \equiv m(\bmod 8)$ exists $\Longrightarrow m$ is locally represented by Q at the prime 2

Example

- $Q(\overrightarrow{\mathbf{x}})=x^{2}+5 y^{2}+7 z^{2}$ and $m=3$
- $2 \nmid(1 \cdot 5 \cdot 7 \cdot 3)$

Back to an Example

$2 \nmid a b c m$ and solution to $Q(\overrightarrow{\mathbf{x}}) \equiv m(\bmod 8)$ exists $\Longrightarrow m$ is locally represented by Q at the prime 2

Example

- $Q(\overrightarrow{\mathbf{x}})=x^{2}+5 y^{2}+7 z^{2}$ and $m=3$
- $2 \nmid(1 \cdot 5 \cdot 7 \cdot 3)$
- $2^{2}+5 \cdot 0^{2}+7 \cdot 1^{2}=11 \equiv 3(\bmod 8)$

Back to an Example

$2 \nmid a b c m$ and solution to $Q(\overrightarrow{\mathbf{x}}) \equiv m(\bmod 8)$ exists $\Longrightarrow m$ is locally represented by Q at the prime 2

Example

- $Q(\overrightarrow{\mathbf{x}})=x^{2}+5 y^{2}+7 z^{2}$ and $m=3$
- $2 \nmid(1 \cdot 5 \cdot 7 \cdot 3)$
- $2^{2}+5 \cdot 0^{2}+7 \cdot 1^{2}=11 \equiv 3(\bmod 8)$
- 3 is locally represented everywhere by Q

Future Work

Try to find a lower bound on the largest integer m that is locally but not globally represented by Q

Future Work

Try to find a lower bound on the largest integer m that is locally but not globally represented by Q

- computationally (using Sage)

Future Work

Try to find a lower bound on the largest integer m that is locally but not globally represented by Q

- computationally (using Sage)
- theoretically (using theta series, Eisenstein series, and cusp forms)

Thank you for listening!

