EFFECTIVE NON-VANISHING OF CLASS GROUP L-FUNCTIONS FOR BIQUADRATIC CM FIELDS

EMILY PEIRCE AND KATHERINE WEBER

Abstract

In this report, we outline a proof that, given co-prime, square-free integers $d_{1}>0$ and $d_{2}<0$ such that $\left|d_{2}\right| \geq(318310)^{2} d_{1} \exp \left\{\sqrt{d_{1}}\left(\log \left(4 d_{1}\right)+2\right\}\right.$, there exists at least one class group character χ of the biquadratic CM field $\mathbb{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2}}\right)$ such that the L-function $L(\chi, s)$ attached to this character is non-vanishing at $s=\frac{1}{2}$.

1. Introduction and Statement of Results

L-functions are important objects in number theory due to the deep arithmetic information that they encode. Some examples of L-functions are given by Dirichlet series,

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

where $\left\{a_{n}\right\}$ is some arithmetic sequence of complex numbers and s is a complex number with sufficiently large real part. For example, the prototypical L-function is the famous Riemann zeta function:

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

This sum can be expressed as an Euler product

$$
\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

revealing its connection to the prime numbers. In this paper, we will study an interesting family of L-functions called class group L-functions. In particular, we will prove an effective non-vanishing theorem for central values of these L-functions.

In order to describe these L-functions, we will need to introduce some notation and definitions. Let $d_{1}>0$ and $d_{2}<0$ be coprime, squarefree integers. Let $K=\mathbb{Q}\left(\sqrt{d_{1}}\right)$ be a real quadratic field and let $E=\mathbb{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2}}\right)$ be an imaginary quadratic extension of K. Let D_{K}, D_{E} be the absolute values of the discriminants of K and E, respectively. Let $\mathcal{O}_{K}, \mathcal{O}_{E}$ be the rings of integers of K, E, respectively, \mathcal{O}_{K}^{\times}be the group of units of $\mathcal{O}_{K}, \operatorname{Cl}\left(\mathcal{O}_{E}\right)$ be the ideal class group of E, h_{E} be the class number, and $\widehat{C l\left(\mathcal{O}_{E}\right)}$ be the group of characters, and R_{K} the regulator of K. Let $\zeta_{K}(s)$ denote the Dedekind zeta function, and γ_{K} denote the constant term of the Laurent expansion of $\zeta_{K}(s)$ at $s=1$. Note that $\gamma_{\mathbb{Q}}$ is the usual Euler's constant.

We will expand upon a few of these definitions. Recall that the ideal class group of a field E is the quotient group $C l(E)=\frac{J_{E}}{P_{E}}$ where J_{E} is the set of fractional ideals of E and P_{E} is the set of principal fractional ideals. A fractional ideal \mathfrak{a} is an \mathcal{O}_{E} submodule of E of the form $\mathfrak{a}=\frac{1}{x} \mathfrak{b}$, where x is an algebraic integer and $\mathfrak{b} \subseteq \mathcal{O}_{E}$ is an integral ideal, and a principal
ideal is an ideal generated by a single element. The ideal class group is a finite abelian group. It is useful because it measures how "close" \mathcal{O}_{E} is to being a principal ideal domain. The class number, h_{E}, is the order of the class group. \mathcal{O}_{E} is a principal ideal domain if and only if E has class number 1 .

Definition 1.1. Let G be a finite abelian group. A function $\chi: G \rightarrow \mathbb{C}^{\times}$is a character of G if it is a group homomorphism. The set of characters \widehat{G} is a finite abelian group called the character group of G.

We are now ready to define the class group L-function:
Definition 1.2. Given $\chi \in \widehat{C l\left(\mathcal{O}_{E}\right)}$, we define the class group L-function by

$$
L(\chi, s)=\sum_{[A] \in C l\left(\mathcal{O}_{E}\right)} \chi(A) \zeta_{E}(s, A)
$$

where

$$
\zeta_{E}(s, A)=\sum_{0 \neq \mathfrak{a} \in[A]} N(\mathfrak{a})^{-s}
$$

is the partial zeta function (here, $N(\mathfrak{a})$ is the norm of the ideal \mathfrak{a}).
It is well known that if the character χ is nontrivial, $L(\chi, s)$ extends to an entire function on the complex plane \mathbb{C}, which satisfies the following functional equation:

$$
\Lambda_{K}(\chi, s)=\Lambda_{K}(\chi, 1-s)
$$

where $\Lambda_{K}(\chi, s):=\left(\frac{\sqrt{D_{K}}}{(2 \pi)^{2}}\right)^{s} \Gamma(s)^{2} L(\chi, 2)$ (see, for example, [Mas, Sec. 1]). This functional equation tells us that $L(\chi, s)$ is symmetric about the point $s=\frac{1}{2}$. Thus, $L\left(\chi, \frac{1}{2}\right)$ is called the central value.

We now define the Hilbert modular Eisenstein series associated to K. Since K is a real quadratic field, it has two embeddings, σ_{1} and σ_{2}, into the real numbers.
Let

$$
\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}
$$

be the complex upper half-plane and $z=\left(z_{1}, z_{2}\right) \in \mathbb{H}^{2}$ where $z_{j}=x_{j}+i y_{j} \in \mathbb{H}$. Let $y=\operatorname{Im}(z)=\left(y_{1}, y_{2}\right)$. Then

$$
N(y)=\prod_{j=1}^{2} y_{j}
$$

and

$$
N(\alpha+\beta z)=\prod_{j=1}^{2}\left(\sigma_{j}(\alpha)+\sigma_{j}(\beta) z_{j}\right)
$$

for $\alpha, \beta \in K$.
Definition 1.3. The Hilbert modular Eisenstein series is defined by

$$
E_{K}(z, s)=\sum_{0 \neq(\alpha, \beta) \in \mathcal{O}_{K}^{2} / \mathcal{O}_{K}^{\times}} \frac{N(y)^{s}}{|N(\alpha+\beta z)|^{2 s}}, \quad z \in \mathbb{H}^{2}, \quad \operatorname{Re}(s)>1 .
$$

We now state a useful result that connects this Eisenstein series to the average of class group L-functions.

Proposition 1.4. For $\chi \in \widehat{C l\left(\mathcal{O}_{E}\right)}$, we have

$$
\frac{1}{h_{E}} \sum_{\chi \in C \widehat{l\left(\mathcal{O}_{E}\right)}} L(\chi, s)=\left(\frac{4 D_{K}}{\sqrt{D_{E}}}\right)^{s} \frac{1}{\left[\mathcal{O}_{E}^{\times}: \mathcal{O}_{K}^{\times}\right]} E_{K}\left(z_{\mathcal{O}_{E}}, s\right),
$$

where $z_{\mathcal{O}_{E}} \in \mathbb{H}^{2}$ is the CM point associated to the class $\left[\mathcal{O}_{E}\right]$ (to be defined later).
Since $\left(\frac{4 D_{K}}{\sqrt{D_{E}}}\right)^{s} \frac{1}{\left[\mathcal{O}_{E}^{\times}: \mathcal{O}_{K}^{\times}\right]}$is always non-zero, in order to show that there exists at least one χ such that $L\left(\chi, \frac{1}{2}\right) \neq 0$, it suffices to show that $E_{K}\left(z_{\mathcal{O}_{E}}, \frac{1}{2}\right) \neq 0$.

Main Theorem (Theorem 1). Let $d_{1}>0$ and $d_{2}<0$ be square-free, co-prime integers with $d_{1} \equiv 1 \bmod 4$ and $d_{2} \equiv 2$ or $3 \bmod 4$. Assume $K=\mathbb{Q}\left(\sqrt{d_{1}}\right)$ has narrow class number 1 and let $E=\mathbb{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2}}\right)$. Then if

$$
\left|d_{2}\right| \geq(318310)^{2} d_{1} \exp \left\{\sqrt{d_{1}}\left(\log \left(4 d_{1}\right)+2\right\}\right.
$$

there exists a character $\chi \in \widehat{\operatorname{Cl(\mathcal {O}_{E})}}$ such that $L\left(\chi, \frac{1}{2}\right) \neq 0$.
Essentially, this theorem reduces the question of whether these class group L-functions are non-vanishing to a finite (albeit large) calculation. We will outline our proof in the next section.

2. Proof Outline

A crucial step is the following decomposition of the Eisenstein series.
Proposition 1. We have

$$
E_{K}\left(z, \frac{1}{2}\right)=M\left(z, \frac{1}{2}\right)+H\left(z, \frac{1}{2}\right)
$$

where

$$
M\left(z, \frac{1}{2}\right)=\sqrt{N(y)}\left[c_{-1} \log (N(y))-c_{-1} \log \left(\frac{\pi^{2}}{D_{K}}\right)+2 \gamma_{K}-2 c_{-1}\left(\gamma_{\mathbb{Q}}+\log (4)\right)\right]
$$

and

$$
H\left(z, \frac{1}{2}\right)=\sqrt{N(y)} \sum_{\gamma \in \mathcal{O}_{K}} \sum_{0 \neq \nu \in \mathcal{O}_{K}^{\vee}} c_{\nu}(\gamma y) e^{2 \pi i \operatorname{Tr}(\gamma \nu x)}
$$

Here, $c_{-1}=\frac{2 R_{K}}{\sqrt{d_{1}}}$ is the residue of the Dedekind zeta function at $s=1$.
Noting that $D_{K}=d_{1}$ and $D_{E}=\left|d_{2}\right|$ under our assumptions, the average formula becomes

$$
\frac{1}{h_{E}} \sum_{\chi \in \widehat{C l\left(\mathcal{O}_{E}\right)}} L\left(\chi, \frac{1}{2}\right)=\left(\frac{4 d_{1}}{\sqrt{\left|d_{2}\right|}}\right)^{\frac{1}{2}} \frac{1}{\left[\mathcal{O}_{E}^{\times}: \mathcal{O}_{K}^{\times}\right]} E_{K}\left(z_{\mathcal{O}_{E}}, \frac{1}{2}\right)
$$

where the special point at which the Eisenstein Series is evaluated is

$$
z_{\mathcal{O}_{E}}=\left(\sqrt{d_{2}}, \sqrt{d_{2}}\right) \in \mathbb{H}^{2}
$$

Then $\operatorname{Im}\left(z_{\mathcal{O}_{E}}\right)=y=\left(\sqrt{\left|d_{2}\right|}, \sqrt{\left|d_{2}\right|}\right)$ and $N(y)=\left|d_{2}\right|$. Also, under these conditions, using Proposition 1, we can write

$$
E_{K}\left(z_{\mathcal{O}_{E}}, \frac{1}{2}\right)=M\left(d_{1}, d_{2}\right)+H\left(d_{1}, d_{2}\right)
$$

where

$$
M\left(d_{1}, d_{2}\right)=\sqrt{\left|d_{2}\right|}\left[\frac{2 R_{K}}{\sqrt{d_{1}}}\left(\log \left(\left|d_{2}\right|\right)-\log \left(\frac{\pi^{2}}{d_{1}}\right)-2\left(\gamma_{\mathbb{Q}}+\log (4)\right)\right)+2 \gamma_{K}\right]
$$

and

$$
H\left(d_{1}, d_{2}\right)=\sqrt{\left|d_{2}\right|} \sum_{\gamma \in \mathcal{O}_{K}} \sum_{0 \neq \nu \in \mathcal{O}_{K}^{\vee}} c_{\nu}\left(\gamma y\left(z_{\mathcal{O}_{E}}\right)\right) e^{2 \pi i \operatorname{Tr}(\gamma \nu x)} .
$$

The vast majority of the project consisted of proving the following proposition, which is a difficult technical refinement of the proof of [Bau, Lemma 1].
Proposition 2.1. If

$$
\left|d_{2}\right| \geq(318310)^{2} d_{1} \exp \left\{\sqrt{d_{1}}\left(\log \left(4 d_{1}\right)+2\right)\right\}
$$

then

$$
\left|H\left(d_{1}, d_{2}\right)\right| \leq 6.80 \times 10^{-401}
$$

By a straightforward argument using the bound

$$
\gamma_{K}>-2 \frac{R_{K}}{\sqrt{d_{1}}}\left(\log \left(\sqrt{d_{1}}\right)-\gamma_{\mathbb{Q}}-\log (4 \pi)+1\right)
$$

(which follows as a consequence of [Iha, Sec. 1.1]), and the well-known bound

$$
R_{K}>\log \left(2 \sqrt{d_{1}}\right),
$$

we show that $M\left(d_{1}, d_{2}\right)>1$, assuming our lower bound on $\left|d_{2}\right|$.
Thus, we have $\left|M\left(d_{1}, d_{2}\right)\right|>\left|H\left(d_{1}, d_{2}\right)\right|$, hence $\left|E_{K}\left(z_{\mathcal{O}_{E}}, \frac{1}{2}\right)\right|>0$. This completes the outline of the proof.
Example 2.2. If $d_{1}=5$, then for $\left|d_{2}\right| \geq 2.77028 \times 10^{13}$, there exists a $\chi \in \widehat{\operatorname{Cl(\mathcal {O}_{E})}}$ such that $L\left(\chi, \frac{1}{2}\right) \neq 0$.
Remark 2.3. Theorem 1 can be generalized to any CM extension E of a totally real field K with narrow ideal class number one. The details will appear in a future paper.

References

[Bau] Hartmut Bauer, Zeros of Asai-Eisenstein series. Math. Z. 254 (2006), no. 2, 219-237.
[Iha] Yasutaka Ihara, The Euler-Kronecker invariants in various families of global fields. Séminaires et Congrés. 21 (2009), 79-102.
[Mas] R. Masri, CM Cylces and Nonvanishing of Class Group L-Functions. Math. Res. Lett. 17 (2012), no. 04, 749-760.

