Effective Non-Vanishing of Class Group L-Functions for Biquadratic CM Fields

Emily Peirce
(joint with Adrian Barquero-Sanchez and Katy Weber)

July 24, 2014

Statement of Results

Theorem (B-S, Peirce, W)

Let $d_{1}>0$ and $d_{2}<0$ be square-free, co-prime integers with $d_{1} \equiv 1$ $\bmod 4$ and $d_{2} \equiv 2$ or $3 \bmod 4$. Assume $K=\mathbb{Q}\left(\sqrt{d_{1}}\right)$ has class number one and let $E=\mathbb{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2}}\right)$. Then if

$$
\left|d_{2}\right| \geq C_{1}\left(d_{1}\right):=(318310)^{2} d_{1} \exp \left\{\sqrt{d_{1}}\left(\log \left(4 d_{1}\right)+2\right)\right\}
$$

then there exists a character $\chi \in \widehat{C /\left(\mathcal{O}_{E}\right)}$ such that $L\left(\chi, \frac{1}{2}\right) \neq 0$.

Connection to Eisenstein Series

Under our assumptions on K and E, the average formula becomes

$$
\frac{1}{h_{E}} \sum_{\chi \in \widehat{C l\left(\mathcal{O}_{E}\right)}} L\left(\chi, \frac{1}{2}\right)=\left(\frac{2^{n} d_{1}}{\sqrt{\left|d_{2}\right|}}\right)^{\frac{1}{2}} \frac{1}{\left[\mathcal{O}_{E}^{\times}: \mathcal{O}_{K}^{\times}\right]} E_{K}\left(z_{\mathcal{O}_{E}}, \frac{1}{2}\right)
$$

where the special point is

$$
z_{\mathcal{O}_{E}}=\left(\sqrt{d_{2}}, \sqrt{d_{2}}\right) \in \mathbb{H}^{2} .
$$

Connection to Eisenstein Series

Under our assumptions on K and E, the average formula becomes

$$
\frac{1}{h_{E}} \sum_{\chi \in \widehat{C l\left(\mathcal{O}_{E}\right)}} L\left(\chi, \frac{1}{2}\right)=\left(\frac{2^{n} d_{1}}{\sqrt{\left|d_{2}\right|}}\right)^{\frac{1}{2}} \frac{1}{\left[\mathcal{O}_{E}^{\times}: \mathcal{O}_{K}^{\times}\right]} E_{K}\left(z_{\mathcal{O}_{E}}, \frac{1}{2}\right)
$$

where the special point is

$$
z_{\mathcal{O}_{E}}=\left(\sqrt{d_{2}}, \sqrt{d_{2}}\right) \in \mathbb{H}^{2} .
$$

From this formula, it suffices to show that

$$
E_{K}\left(z_{\mathcal{O}_{E}}, \frac{1}{2}\right) \neq 0 .
$$

Decomposition of the Eisenstein Series

Proposition

We have

$$
E_{K}\left(z_{\mathcal{O}_{E}}, \frac{1}{2}\right)=M\left(d_{1}, d_{2}\right)+H\left(d_{1}, d_{2}\right)
$$

where

$$
M\left(d_{1}, d_{2}\right)=\sqrt{\left|d_{2}\right|}\left[\frac{2 R_{K}}{\sqrt{d_{1}}}\left(\log \left(\left|d_{2}\right|\right)-\log \left(\frac{\pi^{2}}{d_{1}}\right)-2\left(\gamma_{Q}+\log (4)\right)\right)+2 \gamma_{K}\right]
$$

and

$$
H\left(d_{1}, d_{2}\right)=\sqrt{\left|d_{2}\right|} \sum_{\gamma \in \mathcal{O}_{K}} \sum_{0 \neq \nu \in \mathcal{O}_{K}^{\Sigma}} c_{\nu}\left(\gamma y\left(z_{\mathcal{O}_{E}}\right)\right) e^{2 \pi i \operatorname{Tr}(\gamma \nu x)} .
$$

The plan of the proof

- By the previous proposition and the reverse triangle inequality,

$$
\left|E_{K}\left(z_{\mathcal{O}_{d_{2}}}, \frac{1}{2}\right)\right| \geq\left|M\left(d_{1}, d_{2}\right)\right|-\left|H\left(d_{1}, d_{2}\right)\right| .
$$

The plan of the proof

- By the previous proposition and the reverse triangle inequality,

$$
\left|E_{K}\left(z_{\mathcal{O}_{d_{2}}}, \frac{1}{2}\right)\right| \geq\left|M\left(d_{1}, d_{2}\right)\right|-\left|H\left(d_{1}, d_{2}\right)\right| .
$$

- Hence it suffices to show $\left|M\left(d_{1}, d_{2}\right)\right|>\left|H\left(d_{1}, d_{2}\right)\right|$.

The plan of the proof

－By the previous proposition and the reverse triangle inequality，

$$
\left|E_{K}\left(z_{\mathcal{O}_{d_{2}}}, \frac{1}{2}\right)\right| \geq\left|M\left(d_{1}, d_{2}\right)\right|-\left|H\left(d_{1}, d_{2}\right)\right| .
$$

－Hence it suffices to show $\left|M\left(d_{1}, d_{2}\right)\right|>\left|H\left(d_{1}, d_{2}\right)\right|$ ．
－We will give an upper bound for $\left|H\left(d_{1}, d_{2}\right)\right|$ and a lower bound for $\left|M\left(d_{1}, d_{2}\right)\right|$ ．

An Upper Bound for $\left|H\left(d_{1}, d_{2}\right)\right|$

Proposition

If

$$
\left|d_{2}\right| \geq(318310)^{2} d_{1} \exp \left\{\sqrt{d_{1}}\left(\log \left(4 d_{1}\right)+2\right)\right\}
$$

then

$$
\left|H\left(d_{1}, d_{2}\right)\right| \leq 6.80 \times 10^{-401} .
$$

An Upper Bound for $\left|H\left(d_{1}, d_{2}\right)\right|$

Proposition

If

$$
\left|d_{2}\right| \geq(318310)^{2} d_{1} \exp \left\{\sqrt{d_{1}}\left(\log \left(4 d_{1}\right)+2\right)\right\}
$$

then

$$
\left|H\left(d_{1}, d_{2}\right)\right| \leq 6.80 \times 10^{-401} .
$$

The proof involves a very complicated argument to effectivize an upper bound of Bauer.

A Lower Bound for $M\left(d_{1}, d_{2}\right)$

Proposition

We have

$$
M\left(d_{1}, d_{2}\right)>1
$$

A Lower Bound for $M\left(d_{1}, d_{2}\right)$

Proposition

We have

$$
M\left(d_{1}, d_{2}\right)>1
$$

The proof uses Ihara's lower bound

$$
\gamma_{K}>-2\left(\log \left(4 d_{1}\right)+2\right)\left(\log \left(\sqrt{d_{1}}\right)-\gamma_{\mathbb{Q}}-\log (4 \pi)\right)
$$

and the lower bound

$$
R_{K}>\log \left(2 \sqrt{d_{1}}\right) .
$$

Summary

- For

$$
\left|d_{2}\right| \geq(318310)^{2} d_{1} \exp \left\{\sqrt{d_{1}}\left(\log \left(4 d_{1}\right)+2\right)\right\}
$$

we have $\left|H\left(d_{1}, d_{2}\right)\right|<1$ and $M\left(d_{1}, d_{2}\right)>1$.

Summary

- For

$$
\left|d_{2}\right| \geq(318310)^{2} d_{1} \exp \left\{\sqrt{d_{1}}\left(\log \left(4 d_{1}\right)+2\right)\right\}
$$

we have $\left|H\left(d_{1}, d_{2}\right)\right|<1$ and $M\left(d_{1}, d_{2}\right)>1$.

- Thus $\left|M\left(d_{1}, d_{2}\right)\right|>\left|H\left(d_{1}, d_{2}\right)\right|$, implying $\left|E_{K}\left(z_{\mathcal{O}_{E}}, \frac{1}{2}\right)\right|>0$.

Summary

- For

$$
\left|d_{2}\right| \geq(318310)^{2} d_{1} \exp \left\{\sqrt{d_{1}}\left(\log \left(4 d_{1}\right)+2\right)\right\}
$$

we have $\left|H\left(d_{1}, d_{2}\right)\right|<1$ and $M\left(d_{1}, d_{2}\right)>1$.

- Thus $\left|M\left(d_{1}, d_{2}\right)\right|>\left|H\left(d_{1}, d_{2}\right)\right|$, implying $\left|E_{K}\left(z_{\mathcal{O}_{E}}, \frac{1}{2}\right)\right|>0$.
- Hence, by the average formula, there exists a $\chi \in \widehat{C /\left(\mathcal{O}_{E}\right)}$ such that $L\left(\chi, \frac{1}{2}\right) \neq 0$.

Example

- Choose $d_{1}=5$.

Example

- Choose $d_{1}=5$.
- Then

$$
C_{1}(5)=2.77028 \times 10^{13}
$$

Example

- Choose $d_{1}=5$.
- Then

$$
C_{1}(5)=2.77028 \times 10^{13} .
$$

- Hence for all

$$
\left|d_{2}\right| \geq 2.77028 \times 10^{13}
$$

there exists a χ such that $L\left(\chi, \frac{1}{2}\right) \neq 0$.

Some Remarks

- The restrictions on d_{1} and d_{2} were made to simplify the presentation.

Some Remarks

- The restrictions on d_{1} and d_{2} were made to simplify the presentation.
- A version of the main result holds for any CM extension E of K when K has class number one.

Some Remarks

- The restrictions on d_{1} and d_{2} were made to simplify the presentation.
- A version of the main result holds for any CM extension E of K when K has class number one.
- One has reduced the question of the existence of non-vanishing $L\left(\chi, \frac{1}{2}\right)$ to a (large!) finite calculation.

