Effective Non-vanishing of Class Group L-Functions for Biquadratic CM Fields

Katy Weber (Joint with Adrian Barquero-Sanchez and Emily Peirce)

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Notation

Fix the following notation:

- F is a number field.
- d_F is the absolute value of the discriminant of F.
- \mathcal{O}_F is the ring of integers of F.
- \mathcal{O}_F^{\times} is the group of units of \mathcal{O}_F .
- $Cl(\mathcal{O}_F)$ is the ideal class group of F.
- h_F is the class number.
- R_F is the regulator of F.
- $\zeta_F(s)$ is the Dedekind zeta function.
- γ_F is the constant term of $\zeta_F(s)$ at s = 1.

(日) (日) (日) (日) (日) (日) (日) (日)

The ideal class group

Recall that:

• The *ideal class group* $Cl(\mathcal{O}_F)$ is a finite abelian group that measures "how close" \mathcal{O}_F is to being a PID.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

The ideal class group

Recall that:

• The *ideal class group* $Cl(\mathcal{O}_F)$ is a finite abelian group that measures "how close" \mathcal{O}_F is to being a PID.

ション ふゆ マ キャット マックシン

• The class number h_F is the order of the class group.

The ideal class group

Recall that:

• The *ideal class group* $Cl(\mathcal{O}_F)$ is a finite abelian group that measures "how close" \mathcal{O}_F is to being a PID.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

- The class number h_F is the order of the class group.
- \mathcal{O}_F is a PID \iff F has class number 1.

Effective Non-vanishing of Class Group L-Functions for Biquadratic CM Fields

Group characters

Let G be a finite abelian group.

Group characters

Let G be a finite abelian group.

Definition

A function $\chi: G \to \mathbb{C}^{\times}$ is a *character* of G if it is a group homomorphism.

ション ふゆ マ キャット マックシン

Group characters

Let G be a finite abelian group.

Definition

A function $\chi: G \to \mathbb{C}^{\times}$ is a *character* of G if it is a group homomorphism.

The set of characters \widehat{G} is a finite abelian group called the *group* of characters of G.

うして ふゆう ふほう ふほう ふしつ

Group characters

Let G be a finite abelian group.

Definition

A function $\chi: G \to \mathbb{C}^{\times}$ is a *character* of G if it is a group homomorphism.

The set of characters \widehat{G} is a finite abelian group called the *group* of characters of G.

うして ふゆう ふほう ふほう ふしつ

Note. $#\widehat{G} = #G.$

Definition

Given $\chi \in \widehat{Cl(\mathcal{O}_F)}$, we define the class group L-function by

$$L(\chi, s) = \sum_{C \in Cl(\mathcal{O}_F)} \chi(C) \zeta_F(s, C)$$

where

$$\zeta_F(s,C) = \sum_{0 \neq I \in C} N(I)^{-s}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

is the *partial zeta function*.

Effective Non-vanishing of Class Group L-Functions for Biquadratic CM Fields

Class group L-functions

• If χ is nontrivial, $L(\chi, s)$ extends to an entire function on \mathbb{C} .

• If χ is nontrivial, $L(\chi, s)$ extends to an entire function on \mathbb{C} .

• One has a functional equation relating $L(\chi, s)$ to $L(\chi, 1-s)$.

• If χ is nontrivial, $L(\chi, s)$ extends to an entire function on \mathbb{C} .

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- One has a functional equation relating $L(\chi, s)$ to $L(\chi, 1-s)$.
- The "central value" is $L(\chi, \frac{1}{2})$.

• If χ is nontrivial, $L(\chi, s)$ extends to an entire function on \mathbb{C} .

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

- One has a functional equation relating $L(\chi, s)$ to $L(\chi, 1-s)$.
- The "central value" is $L(\chi, \frac{1}{2})$.
- We wish to determine whether $L(\chi, \frac{1}{2}) \neq 0$.

• Let K be a totally real field of degree n with embeddings $\sigma_j: K \hookrightarrow \mathbb{R}$ for $j = 1, \ldots, n$.

• Let K be a totally real field of degree n with embeddings $\sigma_j: K \hookrightarrow \mathbb{R}$ for $j = 1, \ldots, n$.

• Let

$$\mathbb{H} = \{ z \in \mathbb{C} : \operatorname{Im}(z) > 0 \}$$

be the complex upper half-plane and $\mathbf{z} = (z_1, \ldots, z_n) \in \mathbb{H}^n$ where $z_j = x_j + iy_j \in \mathbb{H}$.

うして ふゆう ふほう ふほう ふしつ

• Let K be a totally real field of degree n with embeddings $\sigma_j : K \hookrightarrow \mathbb{R}$ for $j = 1, \ldots, n$.

• Let

$$\mathbb{H} = \{ z \in \mathbb{C} : \operatorname{Im}(z) > 0 \}$$

be the complex upper half-plane and $\mathbf{z} = (z_1, \ldots, z_n) \in \mathbb{H}^n$ where $z_j = x_j + iy_j \in \mathbb{H}$.

• Let $\mathbf{y} = \operatorname{Im}(\mathbf{z}) = (y_1, \dots, y_n)$ and $N(\mathbf{y}) = \prod_{j=1}^n y_j$.

• Let K be a totally real field of degree n with embeddings $\sigma_j : K \hookrightarrow \mathbb{R}$ for $j = 1, \ldots, n$.

• Let

$$\mathbb{H} = \{ z \in \mathbb{C} : \operatorname{Im}(z) > 0 \}$$

be the complex upper half-plane and $\mathbf{z} = (z_1, \ldots, z_n) \in \mathbb{H}^n$ where $z_j = x_j + iy_j \in \mathbb{H}$.

うして ふゆう ふほう ふほう ふしつ

• Let $\mathbf{y} = \operatorname{Im}(\mathbf{z}) = (y_1, \dots, y_n)$ and $N(\mathbf{y}) = \prod_{j=1}^n y_j$.

• Let $N(\alpha + \beta \mathbf{z}) = \prod_{j=1}^{n} (\sigma_j(\alpha) + \sigma_j(\beta) z_j)$ for $\alpha, \beta \in K$.

Definition The Hilbert modular Eisenstein series is defined by $E_K(\mathbf{z}, s) = \sum_{0 \neq (\alpha, \beta) \in \mathcal{O}_K^2 / \mathcal{O}_K^\times} \frac{N(\mathbf{y})^s}{|N(\alpha + \beta \mathbf{z})|^{2s}}, \quad \mathbf{z} \in \mathbb{H}^n, \quad \operatorname{Re}(s) > 1.$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

The average formula

Let E be an imaginary quadratic extension of K (E is called a CM field).

The average formula

Let E be an imaginary quadratic extension of K (E is called a CM field).

Proposition For $\chi \in Cl(\mathcal{O}_E)$, we have $\frac{1}{h_E} \sum_{\chi \in \widehat{Cl(\mathcal{O}_E)}} L(\chi, s) = \left(\frac{2^n d_K}{\sqrt{d_E}}\right)^s \frac{1}{[\mathcal{O}_E^{\times} : \mathcal{O}_K^{\times}]} E_K(\mathbf{z}_{\mathcal{O}_E}, s),$ where $\mathbf{z}_{\mathcal{O}_E} \in \mathbb{H}^n$ is a certain special point depending on \mathcal{O}_E .

うして ふゆう ふほう ふほう ふしつ

Statement of Main Result

Theorem (B-S,P,Weber)

Let $d_1 > 0$ and $d_2 < 0$ be squarefree, coprime integers with $d_1 \equiv 1 \mod 4$ and $d_2 \equiv 2$ or $3 \mod 4$. Assume $K = \mathbb{Q}(\sqrt{d_1})$ has class number 1 and let $E = \mathbb{Q}(\sqrt{d_1}, \sqrt{d_2})$. Then if

$$|d_2| \ge (318310)^2 d_1 \exp\left\{\sqrt{d_1}(\log(4d_1) + 2\right\}$$

then there exists a character $\chi \in \widehat{Cl(\mathcal{O}_E)}$ such that $L(\chi, \frac{1}{2}) \neq 0$.

うして ふゆう ふほう ふほう ふしつ