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Smale’s 17th Problem

Smale’s 17th Problem

Does there exist a deterministic algorithm which approximates a
root of a polynomial system and runs in polynomial time on
average?



Approximate Roots

Definition – Approximate Root (Smale [1986])

Suppose f : Cn → Cn is a multivariate polynomial. Let z ∈ Cn be
a point such that

|ζ − Nk
f (z)| ≤ 1

22k − 1
|ζ − z |

where Nf is the Newton operator, z 7→ z − Df (z)−1f (z), and ζ is
an actual root of f . Then z is an approximate root of f with
associated true root ζ.



Approximate Roots: γ Theory

Definition – γ (Smale [1986])

For f : Cn → Cn analytic in a neighborhood of z ∈ Cn let

γ(f , z) := sup
k≥2

∣∣∣∣∣ f ′(z)−1f (k)(z)

k!

∣∣∣∣∣
1

k−1

γ Theorem (Smale [1986])

Suppose f : Cn → Cn is analytic in a neighborhood of z containing
a root ζ of f and that f ′(ζ) is invertible. If

|z − ζ| ≤ 3−
√

7

2γ(f , ζ)

then z is an approximate root of f with associated true root ζ.



Approximate Roots: α Theory

Definition – β and α (Smale [1986])

For f : Cn → Cn analytic in a neighborhood of z ∈ Cn let

β(f , z) := |f ′(z)−1f (z)|

and
α(f , z) := β(f , z)γ(f , z)

α Theorem (Smale [1986])

There exists a universal constant α0 such that if z ∈ Cn with
α(f , z) < α0 then z is an approximate root of f .
Smale, 1986: α0 ≥ 0.1370707.
Wang and Han, 1989: α0 ≥ 3− 2

√
2.



Examples of γ Theory

Lemma (B.)

For any univariate polynomial f (x1) = c1xa1
1 + . . .+ ctx

at
1 where

c1, . . . , ct ∈ C∗ and a1, . . . , at ∈ N with 0 < a1 < . . . < at we have
that γ(f , z) ≤

∣∣at−1
2z

∣∣ for all z ∈ C.

Example

Let f (x1) = xd
1 − c. z is an approximate root of f if |c | > 1 and

|z − c
1
d | ≤ 1

3d
≤ 3−

√
7

d − 1
|c

1
d |

or 0 < c < 1 and

|z − c
1
d | ≤ 3−

√
7

d
|c | ≤ 3−

√
7

d − 1
|c

1
d |



The Bisection Method

Consider f (x1) := xd
1 − c where c > 0 and d ∈ N.



The Bisection Method

The complexity of evaluating f at each iteration is O(log(d)2) and
we need no more than O(log(d)± log(c)) iterations so:

Lemma (B.)

A root of a random binomial of the form f (x1) := xd
1 − c for c > 0

and d ∈ N can be approximated in time O(log(d)3) on average
using the bisection method.



Monic Univariate Binomials

What if c is complex? Let c = a + bi = re iθ and observe that

c
1
d = r

1
d e

iθ
d .

Algorithm for Monic Univariate Binomials

1 Approximate r
1
d to within ε

5 using bisection. Call this
approximation r0.

2 Approximate θ by approximating arctan
(
b
a

)
to within dε

5 with
Taylor series. Call this approximation α.

3 Approximate e i
α
d to within ε

5 via Taylor series. Call the
approximations for the cosine and sine components sk and tk
respectively.

4 Return r0(sk + itk).



Monic Univariate Binomials

Recall that our approximate root is r0(sk + itk).

sk and tk are kth partial sums where k = O(log d)

The complexity of computing sk and tk is then
O(log d((log d)2 + (log d)2(log log d)2)).

Proposition (B.)

The average complexity of our algorithm is O((log d)3(log log d)2):
better than polynomial in d.



General Univariate Binomals

Consider f (x1) := c1xd
1 − c2 for d ∈ N and c1, c2 ∈ C∗. Note that

f (z) = 0 ⇐⇒ zd − c2
c1

= 0

so let c = c2
c1

and apply our algorithm for the monic case.



Binomial Systems

Example

For a diagonal system of binomials f (x1, . . . , xn) =


xa1
1 − c1

...
xan
n − cn

and x = (x1, . . . , xn) ∈ Cn we have

γ(f , x) ≤
√

2nX max{|x−aii |}||x ||d−21 d2

2

where all ai ∈ Z \ {0}, d = max{ai}, ci ∈ C, X = max{|xi |}, and
||x ||1 =

√
1 + ||x ||2.

For a general system of binomials we have

γ(f , x) ≤
√

2nn+1X max{|x−aii |}||x ||d−21 dn+1

2



Binomial Systems: Diagonal Systems

Algorithm for Diagonal Binomial Systems

Input: A diagonal binomial system f .

1 Let ε be an appropriate lower bound on 3−
√
7

2γ(f ,ζ) where

ζ = (ζ1, . . . , ζn) is a true root of the system.

2 Approximate each ζi to within ε√
n

by some αi .

3 Return α = (α1, . . . , αi ).

Lemma (B.)

On average the complexity of this algorithm is
O(n(d log d)3 + n(d log d)3(log d + log log d))2)



Smith Normal Form

Definition –Smith Normal Form

An n × n nonsingular matrix S is in Smith Normal Form if

1 It is a diagonal matrix

2 All of its entries are positive

3 If S =

 d1 0 . . . 0
. . . 0

0 . . . 0 dn

 then di | di+1 ∀i ∈ {1, . . . , n}.

Example –Smith Normal Form

[
2 0
0 4

]
=

[
−1 1
0 1

] [
2 6
4 8

] [
1 −1
0 1

]



Smith Normal Form

Proposition

For any n × n matrix A there exists a unique matrix S such that
UAV = S for U,V ∈ SL(n,Z).

Theorem (Kannan and Bachem [1979])

There exists an algorithm which returns the Smith Normal Form of
a given nonsingular n × n matrix A and the multipliers U and V
and runs in time polynomial in n and max |aij | where A = (aij).



General Binomial Systems


xa1 − c1 = 0

...
...

...
xan − cn = 0

→


xa11
1 xa12

2 · · · xa1n
n − c1 = 0

...
...

...
xan1
1 xan2

2 · · · xann
n − cn = 0

where each ai ∈ Zn and ci ∈ C∗, and x = (x1, x2, . . . , xn).

↓

(x1, . . . , xn)A − (c1, . . . , cn)I = 0

where A is the matrix of exponents and I is the identity matrix.

↓

f (x1, . . . , xn) =


x s11
1 − cv11

1 · · · cvn1
n = 0

...
...

...
x snn
n − cv1n

1 · · · cvnn
n = 0



General Binomial Systems

Algorithm for General Binomial Systems

Input: a general binomial system f (x) := xA − c.

1 Use Kannan and Bachem’s algorithm to put A into Smith
Normal Form: UAV = S.

2 Let ε be a suitable lower bound for 3−
√
7

2γ(f ,ζ) where ζ is a true
root of f

3 Approximate the roots of the (diagonal) system xS − cV = 0
to within ε√

n||U|| with some z = (z1, . . . , zn).

4 Let α = zU and return α.

Proposition

The above algorithm has average case complexity
O((n(log d + log n) + d)3(log(n(log d + log n) + d))2).



Trinomials: 1 + cxd
1 ± xD

1

Example

For f (x1) := 1 + cxd
1 ± xD

1 with c ∈ C \ {0} the lower polynomials
of f are

1± xD
1 if 0 < |c | < 1

f if |c | = 1

1 + cxd
1 and cxd

1 ± xD
1 if |c| > 1

(0, 0)

(d ,− log |c |)

(D, 0) (0, 0)
(d ,− log |c |)

(D, 0)

(0, 0)

(d ,− log |c |)

(D, 0)



Trinomials: 1 + cxd
1 ± xD

1

Definition – W -Property (Avendaño [2008])

Suppose f (x1) := c1xa1
1 + . . .+ ctx

at
1 ∈ C[x1]. We say f has the

W -property iff the following implication holds: (ai ,− log |ci |) is
within vertical distance W of the lower hull of
ArchNewt(f ) =⇒ (ai ,− log |ci |) is a lower vertex of ArchNewt(f ).

Proposition (Avendaño [2008])

Let f (x1) := 1 + cxd
1 ± xD

1 . If f satisfies the W -property with
W ≥ log2(36D2) then any nonzero root x of a lower binomial of f
satisfies α(f , x) < α0.



Trinomials: 1 + cxd
1 ± xD

1

Robust α Theorem (Blum et al. [1998])

There are positive real numbers α0 and u0 such that if
α(f , z) < α0, then there is a root ζ of f such that

B

(
u0

γ(f , z)
, z

)
⊂ B

(
3−
√

7

2γ(f , ζ)
, ζ

)



Trinomials: 1 + cxd
1 ± xD

1

Algorithm for 1 + cxd
1 ± xD

1

Input: f (x1) := 1 + cxd ± xD .

1 If d = 1 and D = 2 use the quadratic formula to solve for the
roots of f .

2 Otherwise if f has the W -property, use the algorithm for
monic univariate binomials to approximate a root of the lower
binomial of degree D to within ε

(3−
√
7)10

, where ε is as in the

univariate binomial case.

Lemma (B.)

On average this algorithm has computational complexity
O((log d)3(log log d)2).



General Trinomials

Let f (x1) := c1 + c2xd
1 + c3xD

1 , µ = 1
c1

, ρ =
(
c1
c3

) 1
D

, and

ν = c2
c1

(
c1
c3

) d
D

, and observe that

µf (ρx1) = µc1 + µc2ρ
dxd

1 + µc3ρ
DxD

1 x

= 1 + νxd
1 ± xD



Future Work

Handling trinomials that do not satisfy the W-property

Systems of trinomials

Approximating a real root or a root near a query point
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