Strong Solution to Smale's 17th Problem for Strongly Sparse Systems

Paula Burkhardt
Pomona College and Texas A\&M University

July 23, 2014

Smale's 17th Problem

Smale's 17th Problem

Does there exist a deterministic algorithm which approximates a root of a polynomial system and runs in polynomial time on average?

Approximate Roots

Definition - Approximate Root (Smale [1986])

Suppose $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is a multivariate polynomial. Let $z \in \mathbb{C}^{n}$ be a point such that

$$
\left|\zeta-N_{f}^{k}(z)\right| \leq \frac{1}{2^{2^{k}}-1}|\zeta-z|
$$

where N_{f} is the Newton operator, $z \mapsto z-\operatorname{Df}(z)^{-1} f(z)$, and ζ is an actual root of f. Then z is an approximate root of f with associated true root ζ.

Approximate Roots: γ Theory

Definition $-\gamma$ (Smale [1986])

For $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ analytic in a neighborhood of $z \in \mathbb{C}^{n}$ let

$$
\gamma(f, z):=\sup _{k \geq 2}\left|\frac{f^{\prime}(z)^{-1} f^{(k)}(z)}{k!}\right|^{\frac{1}{k-1}}
$$

γ Theorem (Smale [1986])

Suppose $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is analytic in a neighborhood of z containing a root ζ of f and that $f^{\prime}(\zeta)$ is invertible. If

$$
|z-\zeta| \leq \frac{3-\sqrt{7}}{2 \gamma(f, \zeta)}
$$

then z is an approximate root of f with associated true root ζ.

Approximate Roots: α Theory

Definition - β and α (Smale [1986])

For $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ analytic in a neighborhood of $z \in \mathbb{C}^{n}$ let

$$
\beta(f, z):=\left|f^{\prime}(z)^{-1} f(z)\right|
$$

and

$$
\alpha(f, z):=\beta(f, z) \gamma(f, z)
$$

α Theorem (Smale [1986])

There exists a universal constant α_{0} such that if $z \in \mathbb{C}^{n}$ with $\alpha(f, z)<\alpha_{0}$ then z is an approximate root of f.
Smale, 1986: $\alpha_{0} \geq 0.1370707$.
Wang and Han, 1989: $\alpha_{0} \geq 3-2 \sqrt{2}$.

Examples of γ Theory

Lemma (B.)

For any univariate polynomial $f\left(x_{1}\right)=c_{1} x_{1}^{a_{1}}+\ldots+c_{t} x_{1}^{a_{t}}$ where $c_{1}, \ldots, c_{t} \in \mathbb{C}^{*}$ and $a_{1}, \ldots, a_{t} \in \mathbb{N}$ with $0<a_{1}<\ldots<a_{t}$ we have that $\gamma(f, z) \leq\left|\frac{a_{t}-1}{2 z}\right|$ for all $z \in \mathbb{C}$.

Example

Let $f\left(x_{1}\right)=x_{1}^{d}-c . z$ is an approximate root of f if $|c|>1$ and

$$
\left|z-c^{\frac{1}{d}}\right| \leq \frac{1}{3 d} \leq \frac{3-\sqrt{7}}{d-1}\left|c^{\frac{1}{d}}\right|
$$

or $0<c<1$ and

$$
\left|z-c^{\frac{1}{d}}\right| \leq \frac{3-\sqrt{7}}{d}|c| \leq \frac{3-\sqrt{7}}{d-1}\left|c^{\frac{1}{d}}\right|
$$

The Bisection Method

Consider $f\left(x_{1}\right):=x_{1}^{d}-c$ where $c>0$ and $d \in \mathbb{N}$.

The Bisection Method

The complexity of evaluating f at each iteration is $O\left(\log (d)^{2}\right)$ and we need no more than $O(\log (d) \pm \log (c))$ iterations so:

Lemma (B.)

A root of a random binomial of the form $f\left(x_{1}\right):=x_{1}^{d}-c$ for $c>0$ and $d \in \mathbb{N}$ can be approximated in time $O\left(\log (d)^{3}\right)$ on average using the bisection method.

Monic Univariate Binomials

What if c is complex? Let $c=a+b i=r e^{i \theta}$ and observe that $c^{\frac{1}{d}}=r^{\frac{1}{d}} e^{\frac{i \theta}{d}}$.

Algorithm for Monic Univariate Binomials

1 Approximate $r^{\frac{1}{d}}$ to within $\frac{\varepsilon}{5}$ using bisection. Call this approximation r_{0}.
2 Approximate θ by approximating $\arctan \left(\frac{b}{a}\right)$ to within $\frac{d \varepsilon}{5}$ with Taylor series. Call this approximation α.
3. Approximate $e^{i \frac{\alpha}{d}}$ to within $\frac{\varepsilon}{5}$ via Taylor series. Call the approximations for the cosine and sine components s_{k} and t_{k} respectively.
4 Return $r_{0}\left(s_{k}+i t_{k}\right)$.

Monic Univariate Binomials

Recall that our approximate root is $r_{0}\left(s_{k}+i t_{k}\right)$.

- s_{k} and t_{k} are k th partial sums where $k=O(\log d)$
- The complexity of computing s_{k} and t_{k} is then $O\left(\log d\left((\log d)^{2}+(\log d)^{2}(\log \log d)^{2}\right)\right)$.

Proposition (B.)

The average complexity of our algorithm is $O\left((\log d)^{3}(\log \log d)^{2}\right)$: better than polynomial in d.

General Univariate Binomals

Consider $f\left(x_{1}\right):=c_{1} x_{1}^{d}-c_{2}$ for $d \in \mathbb{N}$ and $c_{1}, c_{2} \in \mathbb{C}^{*}$. Note that

$$
f(z)=0 \Longleftrightarrow z^{d}-\frac{c_{2}}{c_{1}}=0
$$

so let $c=\frac{c_{2}}{c_{1}}$ and apply our algorithm for the monic case.

Binomial Systems

Example

For a diagonal system of binomials $f\left(x_{1}, \ldots, x_{n}\right)=\left\{\begin{array}{c}x_{1}^{a_{1}}-c_{1} \\ \vdots \\ x_{n}^{a_{n}}-c_{n}\end{array}\right.$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$ we have

$$
\gamma(f, x) \leq \frac{\sqrt{2 n} X \max \left\{\left|x_{i}^{-a_{i}}\right|\right\} \mid\|x\|_{1}^{d-2} d^{2}}{2}
$$

where all $a_{i} \in \mathbb{Z} \backslash\{0\}, d=\max \left\{a_{i}\right\}, c_{i} \in \mathbb{C}, X=\max \left\{\left|x_{i}\right|\right\}$, and $\|x\|_{1}=\sqrt{1+\|x\|^{2}}$.
For a general system of binomials we have

$$
\gamma(f, x) \leq \frac{\sqrt{2 n^{n+1}} X \max \left\{\left|x_{i}^{-a_{i}}\right|\right\}\|x\|_{1}^{d-2} d^{n+1}}{2}
$$

Binomial Systems: Diagonal Systems

Algorithm for Diagonal Binomial Systems

Input: A diagonal binomial system f.
1 Let ε be an appropriate lower bound on $\frac{3-\sqrt{7}}{2 \gamma(f, \zeta)}$ where $\zeta=\left(\zeta_{1}, \ldots, \zeta_{n}\right)$ is a true root of the system.
2 Approximate each ζ_{i} to within $\frac{\varepsilon}{\sqrt{n}}$ by some α_{i}.
3 Return $\alpha=\left(\alpha_{1}, \ldots, \alpha_{i}\right)$.

Lemma (B.)

On average the complexity of this algorithm is $\left.O\left(n(d \log d)^{3}+n(d \log d)^{3}(\log d+\log \log d)\right)^{2}\right)$

Smith Normal Form

Definition -Smith Normal Form

An $n \times n$ nonsingular matrix S is in Smith Normal Form if
1 It is a diagonal matrix
2 All of its entries are positive
3 If $S=\left[\begin{array}{cccc}d_{1} & 0 & \ldots & 0 \\ & \ddots & & 0 \\ 0 & \ldots & 0 & d_{n}\end{array}\right]$ then $d_{i} \mid d_{i+1} \forall i \in\{1, \ldots, n\}$.

Example -Smith Normal Form

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 4
\end{array}\right]=\left[\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 6 \\
4 & 8
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]
$$

Smith Normal Form

Proposition

For any $n \times n$ matrix A there exists a unique matrix S such that $U A V=S$ for $U, V \in S L(n, \mathbb{Z})$.

Theorem (Kannan and Bachem [1979])

There exists an algorithm which returns the Smith Normal Form of a given nonsingular $n \times n$ matrix A and the multipliers U and V and runs in time polynomial in n and $\max \left|a_{i j}\right|$ where $A=\left(a_{i j}\right)$.

General Binomial Systems

$$
\left\{\begin{array} { c c c c c }
{ x ^ { a _ { 1 } } - c _ { 1 } } & { = } & { 0 } \\
{ \vdots } & { \vdots } & { \vdots } \\
{ x ^ { a _ { n } } } & { - c _ { n } = } & { 0 }
\end{array} \rightarrow \left\{\begin{array}{ccc}
x_{1}^{a_{11}} x_{2}^{a_{12}} \cdots x_{n}^{a_{1 n}} & -c_{1}= & 0 \\
\vdots & \vdots & \vdots \\
x_{1}^{a_{n 1}} x_{2}^{a_{n 2}} \cdots x_{n}^{a_{n n}} & -c_{n}= & 0
\end{array}\right.\right.
$$

where each $a_{i} \in \mathbb{Z}^{n}$ and $c_{i} \in \mathbb{C} *$, and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

$$
\begin{gathered}
\downarrow \\
\left(x_{1}, \ldots, x_{n}\right)^{A}-\left(c_{1}, \ldots, c_{n}\right)^{\prime}=0
\end{gathered}
$$

where A is the matrix of exponents and I is the identity matrix.

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left\{\begin{array}{ccc}
\downarrow \\
x_{1}^{s_{11}}-c_{1}^{v_{11}} \cdots c_{n}^{v_{n 1}} & = & 0 \\
\vdots & \vdots & \vdots \\
x_{n}^{s_{n n}}-c_{1}^{v_{1 n}} \cdots c_{n}^{v_{n n}} & = & 0
\end{array}\right.
$$

General Binomial Systems

Algorithm for General Binomial Systems

Input: a general binomial system $f(x):=x^{A}-c$.
1 Use Kannan and Bachem's algorithm to put A into Smith Normal Form: $U A V=S$.
2 Let ε be a suitable lower bound for $\frac{3-\sqrt{7}}{2 \gamma(f, \zeta)}$ where ζ is a true root of f
3 Approximate the roots of the (diagonal) system $x^{S}-c^{V}=0$ to within $\frac{\varepsilon}{\sqrt{n}\|U\|}$ with some $z=\left(z_{1}, \ldots, z_{n}\right)$.
4 Let $\alpha=z^{U}$ and return α.

Proposition

The above algorithm has average case complexity $O\left((n(\log d+\log n)+d)^{3}(\log (n(\log d+\log n)+d))^{2}\right)$.

Trinomials: $1+c x_{1}^{d} \pm x_{1}^{D}$

Example

For $f\left(x_{1}\right):=1+c x_{1}^{d} \pm x_{1}^{D}$ with $c \in \mathbb{C} \backslash\{0\}$ the lower polynomials of f are

- $1 \pm x_{1}^{D}$ if $0<|c|<1$
- f if $|c|=1$

■ $1+c x_{1}^{d}$ and $c x_{1}^{d} \pm x_{1}^{D}$ if $|c|>1$

Trinomials: $1+c x_{1}^{d} \pm x_{1}^{D}$

Definition - W-Property (Avendaño [2008])

Suppose $f\left(x_{1}\right):=c_{1} x_{1}^{a_{1}}+\ldots+c_{t} x_{1}^{a_{t}} \in \mathbb{C}\left[x_{1}\right]$. We say f has the W-property iff the following implication holds: $\left(a_{i},-\log \left|c_{i}\right|\right)$ is within vertical distance W of the lower hull of $\operatorname{ArchNewt}(f) \Longrightarrow\left(a_{i},-\log \left|c_{i}\right|\right)$ is a lower vertex of $\operatorname{ArchNewt}(f)$.

Proposition (Avendaño [2008])

Let $f\left(x_{1}\right):=1+c x_{1}^{d} \pm x_{1}^{D}$. If f satisfies the W-property with $W \geq \log _{2}\left(36 D^{2}\right)$ then any nonzero root x of a lower binomial of f satisfies $\alpha(f, x)<\alpha_{0}$.

Trinomials: $1+c x_{1}^{d} \pm x_{1}^{D}$

Robust α Theorem (Blum et al. [1998])

There are positive real numbers α_{0} and u_{0} such that if $\alpha(f, z)<\alpha_{0}$, then there is a root ζ of f such that

$$
B\left(\frac{u_{0}}{\gamma(f, z)}, z\right) \subset B\left(\frac{3-\sqrt{7}}{2 \gamma(f, \zeta)}, \zeta\right)
$$

Trinomials: $1+c x_{1}^{d} \pm x_{1}^{D}$

Algorithm for $1+c x_{1}^{d} \pm x_{1}^{D}$

Input: $f\left(x_{1}\right):=1+c x^{d} \pm x^{D}$.
1 If $d=1$ and $D=2$ use the quadratic formula to solve for the roots of f.
2 Otherwise if f has the W-property, use the algorithm for monic univariate binomials to approximate a root of the lower binomial of degree D to within $\frac{\varepsilon}{(3-\sqrt{7}) 10}$, where ε is as in the univariate binomial case.

Lemma (B.)

On average this algorithm has computational complexity $O\left((\log d)^{3}(\log \log d)^{2}\right)$.

General Trinomials

$$
\begin{aligned}
& \text { Let } f\left(x_{1}\right):=c_{1}+c_{2} x_{1}^{d}+c_{3} x_{1}^{D}, \mu=\frac{1}{c_{1}}, \rho=\left(\frac{c_{1}}{c_{3}}\right)^{\frac{1}{D}}, \text { and } \\
& \nu=\frac{c_{2}}{c_{1}}\left(\frac{c_{1}}{c_{3}}\right)^{\frac{d}{D}} \text {, and observe that }
\end{aligned}
$$

$$
\begin{gathered}
\mu f\left(\rho x_{1}\right)=\mu c_{1}+\mu c_{2} \rho^{d} x_{1}^{d}+\mu c_{3} \rho^{D} x_{1}^{D} x \\
=1+\nu x_{1}^{d} \pm x^{D}
\end{gathered}
$$

Future Work

- Handling trinomials that do not satisfy the W-property
- Systems of trinomials
- Approximating a real root or a root near a query point

References

Martín Avendaño. Unpublished notes, 2008.
Lenore Blum, Felipe Cucker, Mike Shub, and Steve Smale. Complexity and Real Computation. Springer-Verlag, 1998.
Ravindran Kannan and Achim Bachem. "Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix". SIAM Journal on Computing, 8, 1979.
Steve Smale. "Newton's Method Estimates from Data at One Point". In The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics, 1986.

