Synchronizing Molecular Clocks via ATP: What can we Predict?

Joseph Donnelly

Texas A&M University

July 21, 2015

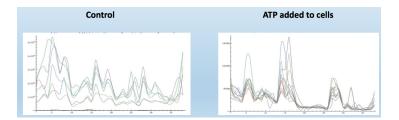
Joseph Donnelly (Texas A&M University) Synchronizing Molecular Clocks via ATP

July 21, 2015 1 / 15

Periodic Stimuli

• Organisms experience periodic stimuli with a consistent 24 hour period. E.g., Light-Dark cycle.

Molecular Clocks


• Molecular Clocks produce output to match this stimuli by organizing biochemical processes into negative feedback patterns.

Molecular Clocks \rightarrow Timekeeping \rightarrow Circadian Rhythm.

Many Cells \rightarrow Many oscillators \rightarrow Requirement for **Synchrony**.

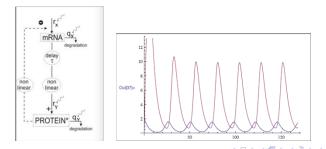
ATP Synchronizes Output in Mice Brain Cells

- The Y-axes represent extracellular [ATP] as measured among 12 separate brain cell colonies.
- The X-axes represent time.
- Extracellular [ATP] was measured every 10 minutes for a total of 72 hours

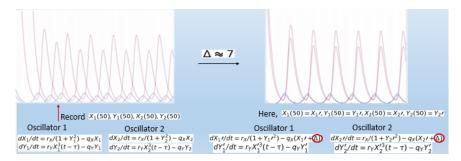
- From a biological perspective, these findings are difficult to explain.
- ATP's biological role in clock is unknown
- ATP as a signaling molecule (exceedingly rare)

- Hypothesis: an effectively instantaneous, equivalent increase in a component common to multiple clocks could bring their outputs into phase.
- The mammalian clock output may be simulated
- If simulation of Dr. Zoran's experiment yields synchronization, theoretical feasibility of the hypothesis would be demonstrable.

The Scheper Model: Describing the circadian clock

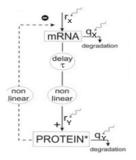

The Scheper Model is a set of delay differential equations.

Scheper Model (X: promoting role/"mRNA")

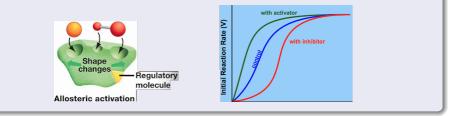

$$\dot{x}(t) = \frac{r_x}{(1+y(t)^2)} - q_x * x(t)$$

Scheper Model (Y: inhibitory role/ "protein")

$$\dot{y}(t) = r_y * x^3(t-\tau) - q_y * y(t)$$



The original hypothesis, "An effectively instantaneous, equivalent increase in one component common to multiple clocks could bring their outputs into phase," was substantiated with simple trial-and-error simulations.


ATP has a promoting role in the molecular clock

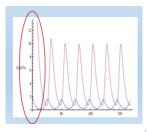
Changes in Y do not lead to synchronization

ATP promotes clock gene transcription

Gene transcription, which is catalyzed by enzymes, is the fundamental promoting process in a mammalian molecular clock. ATP allosterically activates many enzymes, which means it binds to a peripheral site on the enzyme to cause activation (*allo=other, steric=site*).

Predictive Power

Trial-and-error and observing specific cases are easy, but predictions and generalizations are more useful.


- How much ATP is optimal for synchronization?
- Does ATP desynchronize in any case?
- Does synchronization process depend on time of ATP addition?
- Do initial parameters affect synchronization?

Predictive Power

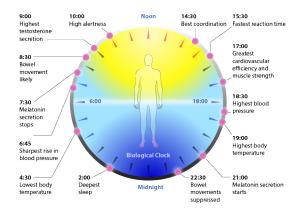
Quantifying Synchrony between two oscillators

 $F(\Delta) = \int_a^b [(x_1(t) - x_2(t))^2 + (y_1(t) - y_2(t))^2] dt$

- a=initial time point, b=final time point
- Oscillator 1: $(x_1(t), y_1(t))$
- Oscillator 2: (*x*₂(*t*), *y*₂(*t*))
- $\Delta = Amount of ATP added$
- Initial time point must be well chosen

Scheper Model with ATP addition Δ

$$\dot{x}(t) = rac{r_x}{(1+y(t)^2)} - q_x * (x(t) + \Delta)$$


$$\dot{y}(t) = r_y * x^3(t-\tau) - q_y * y(t)$$

Deriving and Optimizing integral expression as a function of $\boldsymbol{\Delta}$

$$\begin{aligned} F(\Delta) &= \int_{a}^{b} [(x_{1}(t) - x_{2}(t))^{2} + (y_{1}(t) - y_{2}(t))^{2}] dt \\ F'(\Delta) &= \int_{a}^{b} 2(\frac{\partial x_{1}(t)}{\partial \Delta} - \frac{\partial x_{2}(t)}{\partial \Delta})((x_{1}(t) - x_{2}(t)) dt + \int_{a}^{b} 2(\frac{\partial y_{1}(t)}{\partial \Delta} - \frac{\partial y_{2}(t)}{\partial \Delta})((y_{1}(t) - y_{2}(t)) dt \\ \frac{\partial \dot{x}(t)}{\partial \Delta} &= -[\frac{\partial x(t)}{\partial \Delta}q_{x}] - [\frac{\partial y(t)}{\partial \Delta} * \frac{2y(t)r_{x}}{(1+y(t)^{2})^{2}}] \\ \frac{\partial \dot{y}(t)}{\partial \Delta} &= 3[\frac{\partial x(t)}{\partial \Delta}x^{2}(t-\tau)] - [\frac{\partial y(t)}{\partial \Delta} * q_{y}] \end{aligned}$$

Real World Application

Predicting the behavior of molecular clocks and manipulating their synchrony would allow us to regulate and strengthen our circadian rhythm output.

- 4 ≣ ▶

< A

Main Potential Limitations

- Scheper Model
- Grouping of processes
- Instantaneous addition and uniform mixing of ATP.

Limitations with the Predictive Methods

- $F(\Delta) = \int_a^b [(x_1(t) x_2(t))^2 + (y_1(t) y_2(t))^2] dt$ requires input of two reference oscillators.
- F(Δ) only provides Δ values for specific oscillators, so output is not "general."