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Oscillations in Biology

1 Periodic Stimuli
Organisms experience periodic stimuli with a consistent 24 hour
period. E.g., Light-Dark cycle.

2 Molecular Clocks
Molecular Clocks produce output to match this stimuli by organizing
biochemical processes into negative feedback patterns.
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Circadian Rhythms and Synchronization

Molecular Clocks → Timekeeping → Circadian Rhythm.

Many Cells → Many oscillators → Requirement for Synchrony.
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ATP Synchronizes Output in Mice Brain Cells

The Y-axes represent extracellular [ATP] as measured among 12
separate brain cell colonies.

The X-axes represent time.

Extracellular [ATP] was measured every 10 minutes for a total of 72
hours
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Explaining ATP’s ability to Synchronize

From a biological perspective, these findings are difficult to explain.

ATP’s biological role in clock is unknown

ATP as a signaling molecule (exceedingly rare)
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Explaining ATP’s ability to Synchronize

Hypothesis: an effectively instantaneous, equivalent increase in a
component common to multiple clocks could bring their
outputs into phase.

The mammalian clock output may be simulated

If simulation of Dr. Zoran’s experiment yields synchronization,
theoretical feasibility of the hypothesis would be demonstrable.
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The Scheper Model: Describing the circadian clock

The Scheper Model is a set of delay differential equations.

Scheper Model (X: promoting role/“mRNA”)

ẋ(t) = rx
(1+y(t)2)

− qx ∗ x(t)

Scheper Model (Y: inhibitory role/“protein”)

ẏ(t) = ry ∗ x3(t − τ)− qy ∗ y(t)
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Initial findings

The original hypothesis, “An effectively instantaneous, equivalent
increase in one component common to multiple clocks could bring
their outputs into phase,” was substantiated with simple trial-and-error
simulations.
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Inferences

ATP has a promoting role in the molecular clock

Changes in Y do not lead to synchronization
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Inferences

ATP promotes clock gene transcription

Gene transcription, which is catalyzed by enzymes, is the fundamental
promoting process in a mammalian molecular clock. ATP allosterically
activates many enzymes, which means it binds to a peripheral site on the
enzyme to cause activation (allo=other, steric=site).
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Next Question

Predictive Power

Trial-and-error and observing specific cases are easy, but predictions and
generalizations are more useful.

How much ATP is optimal for synchronization?

Does ATP desynchronize in any case?

Does synchronization process depend on time of ATP addition?

Do initial parameters affect synchronization?
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Predictive Power

Quantifying Synchrony between two oscillators

F (∆) =
∫ b
a [(x1(t)− x2(t))2 + (y1(t)− y2(t))2]dt

a=initial time point, b=final time point

Oscillator 1: (x1(t), y1(t))

Oscillator 2: (x2(t), y2(t))

∆ = Amount of ATP added

Initial time point must be well chosen
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Predictive Power

Scheper Model with ATP addition ∆

ẋ(t) = rx
(1+y(t)2)

− qx ∗ (x(t) + ∆)

ẏ(t) = ry ∗ x3(t − τ) − qy ∗ y(t)

Deriving and Optimizing integral expression as a function of ∆

F (∆) =
∫ b

a
[(x1(t) − x2(t))2 + (y1(t) − y2(t))2]dt

F ′(∆) =
∫ b

a
2( ∂x1(t)

∂∆
− ∂x2(t)

∂∆
)((x1(t) − x2(t))dt +

∫ b

a
2( ∂y1(t)

∂∆
− ∂y2(t)

∂∆
)((y1(t) − y2(t))dt

∂ẋ(t)
∂∆ = −[∂x(t)

∂∆ qx ]− [∂y(t)
∂∆ ∗ 2y(t)rx

(1+y(t)2)2 ]

∂ẏ(t)
∂∆ = 3[∂x(t)

∂∆ x2(t − τ)]− [∂y(t)
∂∆ ∗ qy ]
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Real World Application

Predicting the behavior of molecular clocks and manipulating their
synchrony would allow us to regulate and strengthen our circadian rhythm
output.
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Limitations and Challenges

Main Potential Limitations

Scheper Model

Grouping of processes

Instantaneous addition and uniform mixing of ATP.

Limitations with the Predictive Methods

F (∆) =
∫ b
a [(x1(t)− x2(t))2 + (y1(t)− y2(t))2]dt requires input of

two reference oscillators.

F (∆) only provides ∆ values for specific oscillators, so output is not
“general.”
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