The Number of Roots of Trinomials over Prime Fields

Zander Kelley

July 20, 2015

Background and Previous Work

- Bi, Cheng, and Rojas (2014): A "Descartes Rule" for sparse polynomials over finite fields.
- They show the bound is optimal in many cases by explicitly finding polynomials with many roots.
- However their construction works only for t-nomials over \mathbb{F}_{p^t}

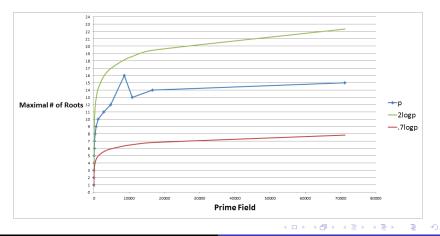
terms	\mathbb{F}_p	\mathbb{F}_{p^2}	\mathbb{F}_{p^3}	\mathbb{F}_{p^4}	\mathbb{F}_{p^5}
3			\checkmark		
4				\checkmark	
5					\checkmark

$$f(x) = x^n + ax^s + b \mod p$$

- We restrict our attention to trinomials with $\delta = gcd(n, s, p 1) = 1.$
- When $\delta \neq 1$, we can use $|Z(x^n + ax^s + b)| = \delta * |Z(x^{n/\delta} + ax^{s/\delta} + b) \cap \langle g^{\delta} \rangle|,$ where $\langle g \rangle = \mathbb{F}_p.$
- For trinomials $f \in \mathbb{F}_p[x]$ with $\delta = 1$, $|Z(f)| = O(\sqrt{p})$.

$O(\sqrt{p})$ appears to be far from optimal

- Cheng, Gao, Rojas, and Wan (2015): There is an infinite set of $\delta = 1$ trinomials with at least $\Omega(\frac{\log \log p}{\log \log \log p})$ roots.
- A brute force search through $\delta = 1$ trinomials suggests that |Z(f)| may grow as slowly as $O(\log p)$.



A New Direction: "Typical" Values of |Z(f)|

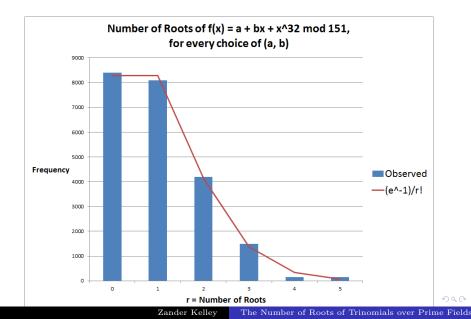
Question

Given a uniform random pair $(a, b) \in (\mathbb{F}_p^*)^2$, what is the distribution of $|Z(x^n + ax^s + b)|$? (with n, s, and p fixed)

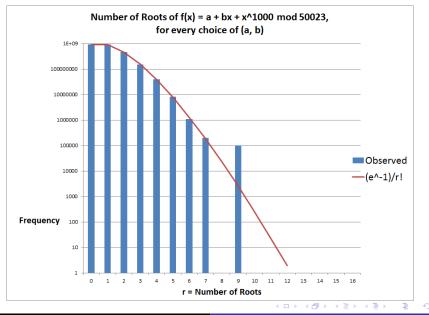
- Many similar questions have been posed and solved for polynomial systems over various fields.
- However, for finite fields, the focus has traditionally been on more general situations.
- As far as we know, this question is not well-studied for this simple case of trinomials over prime finite fields.

向下 イヨト イヨト 二日

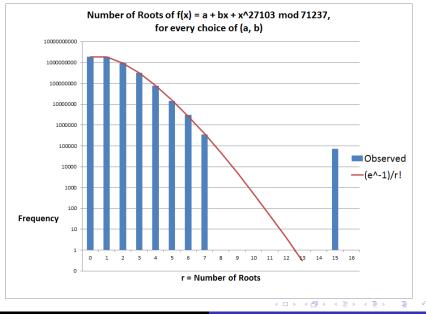
Experimental Data



Experimental Data



Experimental Data



Theorem

Fix $n, s, r \in \mathbb{Z}$ with gcd(n, s) = 1. Let $P_M = \{p \text{ prime } : p \leq M\}$. Let $p \in P_M$ and $(a, b) \in (\mathbb{F}_p^*)^2$ be uniformly random. Under the Generalized Riemann Hypothesis, the probability that $f(x) = x^n + ax^s + b$ has r roots converges to $\frac{e^{-1}}{r!}$ as $M \to \infty$.

Definition

A set of primes S has density
$$\delta$$
 if $\frac{\#\{q \in S : q \le x\}}{\#\{p \text{ prime } : p \le x\}} \to \delta$ as $x \to \infty$.

(A Special Case Of) Frobenius' Density Theorem

For $g(x) \in \mathbb{Z}[x]$, let Gal(g) be the Galois group of the splitting field of g over \mathbb{Q} , and let $C_r = \{\sigma \in Gal(g) : \sigma \text{ has } r \text{ fixed points}\}.$ Then $density(\{p \text{ prime } : (g \mod p) \text{ has } r \text{ roots } in \mathbb{F}_p\}) = \frac{|C_r|}{|Gal(g)|}.$

(A Special Case Of) Dirichlet's Density Theorem

Let p be prime and let $a \in \mathbb{N}$ be less than p. Then $density(\{q \text{ prime } : q \equiv a \mod p\}) = \frac{1}{\varphi(p)} = \frac{1}{p-1}.$

・ロト ・ 一下 ・ ト ・ 日 ト

Fixed Points Of A Random Permutation

Theorem [CMS99]

For $g(x) = x^n + ax^s + b \in \mathbb{Z}[x]$, If gcd(bn, as(n-s)) = 1, Then $Gal(g) \cong S_n$ or A_n .

- Consider $g(x) = x^n + q_a x^s + q_b$ where q_a and q_b are primes.
- Suppose $Gal(g) \cong S_n$ (the A_n case is similar). By Frobenius, the density of primes p such that $(g \mod p)$ has r roots in \mathbb{F}_p is

$$\frac{|C_r|}{|S_n|} \approx \frac{n!/er!}{|S_n|} = \frac{n!/er!}{n!} = \frac{e^{-1}}{r!}$$

 Key trick: By Dirichlet, primes are distributed evenly among residue classes mod p, so choosing random (q_a, q_b) and then reducing mod p is equivalent to choosing random (a, b) ∈ (𝔽^{*}_p)².

레이 지금이 지금이 문

A Convenient Way To Uniformly Sample $(a, b) \in (\mathbb{F}_p^*)^2$

$$f(x) = x^{n} + ax^{s} + b \in \mathbb{F}_{p}[x]$$
$$g(x) = x^{n} + q_{a}x^{s} + q_{b} \in \mathbb{Z}[x]$$

- Choose q_a and q_b randomly from a large set of primes $Q = \{q \text{ prime} : n < q \le M^3\}$
- By Dirichlet, for a given $a \in \mathbb{F}_p$, the probability that $(q \mod p) = a$ approaches $\frac{1}{\varphi(p)} = \frac{1}{p-1}$ as $M \to \infty$.

A Partial Distribution Result

Theorem

Fix $n, s, r \in \mathbb{Z}$ with gcd(n, s) = 1. Let $P_M = \{p \text{ prime } : p \leq M\}$. Let $p \in P_M$ and $(a, b) \in (\mathbb{F}_p^*)^2$ be uniformly random. Under the Generalized Riemann Hypothesis, the probability that $f(x) = x^n + ax^s + b$ has r roots converges to $\frac{e^{-1}}{r!}$ as $M \to \infty$.

- GRH is necessary to handle conflicting convergence requirements of the Frobenius and Dirichlet density theorems.
- Since the prime p is allowed to vary, this result is a weaker version of our Poisson distribution conjecture, which appears plausible for fixed p in our computational examples.
- If we could prove the conjectured version for fixed p, the conjectured O(log p) bound would follow by considering the expected maximum value out of p² samples of a Poisson process.

The Number of Roots of Trinomials over Prime Fields

Zander Kelley

July 20, 2015